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ABSTRACT


		 Binary code analysis is an enabling technique for many applications. Modern compilers and run-time libraries have introduced significant complexities to binary code, which negatively affect the capabilities of binary analysis tool kits to analyze binary code, and may cause tools to report inaccurate information about binary code. Analysts may hence be confused and applications based on these tool kits may have degrading quality. We examine the problem of constructing control flow graphs from binary code and labeling the graphs with accurate function boundary annotations. We identified several challenging code constructs that represent hard-to-analyze aspects of binary code, and show code examples for each code construct. As part of this discussion, we present new code parsing algorithms in our open source Dyninst tool kit that support these constructs, including a new model for describing jump tables that improves our ability to precisely determine the control flow targets, a new interprocedural analysis to determine when a function is non-returning, and techniques for handling tail calls. We evaluated how various tool kits fare when handling these code constructs with real software as well as test binaries patterned after each challenging code construct we found in real software. 
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