

skip to main content

 [image: ACM Digital Library home]

 [image: ACM corporate logo]

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 10.1145/2931037.2931047acmconferencesArticle/Chapter ViewAbstractPublication PagesisstaConference Proceedingsconference-collectionsissta
	Conference
	Proceedings
	Upcoming Events
	Authors
	Affiliations
	Award Winners
	More

 	Home
	Conferences
	ISSTA
	Proceedings
	ISSTA 2016
	Binary code is not easy

research-article Public Access

Share on	
	
	
	
	

Binary code is not easy

 	Authors:
	 [image: Author Picture]Xiaozhu Meng
 University of Wisconsin-Madison, USA

 University of Wisconsin-Madison, USA
View Profile

,
	 [image: Author Picture]Barton P. Miller
 University of Wisconsin-Madison, USA

 University of Wisconsin-Madison, USA
View Profile

Authors Info & Claims

 ISSTA 2016: Proceedings of the 25th International Symposium on Software Testing and AnalysisJuly 2016Pages 24–35https://doi.org/10.1145/2931037.2931047

Published:18 July 2016Publication History[image: Check for updates on crossmark]

	66citation
	1,907
	Downloads

Metrics
Total Citations66
Total Downloads1,907
Last 12 Months355
Last 6 weeks41

	Get Citation Alerts[bookmark: id-hatemile-navigation-6073290063892647-7]New Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

[bookmark: id-hatemile-navigation-6073290063892647-9]New Citation Alert!

Please log in to your account

	
	
	Publisher Site

	
	eReader
	PDF

ISSTA 2016: Proceedings of the 25th International Symposium on Software Testing and Analysis
Binary code is not easyPages 24–35

 PreviousChapterNextChapter

[image: ACM Digital Library]

ABSTRACT

		 Binary code analysis is an enabling technique for many applications. Modern compilers and run-time libraries have introduced significant complexities to binary code, which negatively affect the capabilities of binary analysis tool kits to analyze binary code, and may cause tools to report inaccurate information about binary code. Analysts may hence be confused and applications based on these tool kits may have degrading quality. We examine the problem of constructing control flow graphs from binary code and labeling the graphs with accurate function boundary annotations. We identified several challenging code constructs that represent hard-to-analyze aspects of binary code, and show code examples for each code construct. As part of this discussion, we present new code parsing algorithms in our open source Dyninst tool kit that support these constructs, including a new model for describing jump tables that improves our ability to precisely determine the control flow targets, a new interprocedural analysis to determine when a function is non-returning, and techniques for handling tail calls. We evaluated how various tool kits fare when handling these code constructs with real software as well as test binaries patterned after each challenging code construct we found in real software.

	

 References

	L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tallent. HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience, 22(6):685–701, Apr. 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Stack trace analysis for large scale debugging. In 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 1–10, Long Beach, California, USA, March 2007.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. CodeSurfer/x86: A Platform for Analyzing x86 Executables. In 14th International Conference on Compiler Construction (CC), pages 250–254, Edinburgh, UK, 2005. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	G. Balakrishnan and T. Reps. WYSINWYX: What You See is Not What You eXecute. ACM Transactions on Programming Languages and Systems, 32(6):23:1–23:84, Aug. 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In 23rd USENIX Conference on Security Symposium (SEC), pages 845–860, San Diego, CA, Aug. 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	S. Bardin, P. Herrmann, and F. Védrine. Refinement-based cfg reconstruction from unstructured programs. In 12th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), pages 54–69, Austin, TX, USA, Jan. 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools (PASTE), pages 9–16, Szeged, Hungary, Sep. 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. R. Bernat and B. P. Miller. Structured Binary Editing with a CFG Transformation Algebra. In 2012 19th Working Conference on Reverse Engineering (WCRE), Kingston, Ontario, Canada, October 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. R. Bernat, K. Roundy, and B. P. Miller. Efficient, sensitivity resistant binary instrumentation. In the 2011 International Symposium on Software Testing and Analysis (ISSTA), pages 89–99, Toronto, Ontario, Canada, July 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Bourquin, A. King, and E. Robbins. Binslayer: Accurate comparison of binary executables. In 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop (PPREW), Rome, Italy, Jan. 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary Analysis Platform. In 23rd International Conference on Computer Aided Verification (CAV), pages 463–469, Cliff Lodge, Snowbird, Utah, July 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary code extraction and interface identification for security applications. In 17th Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, Feb. 2010.Google Scholar[image: Google Scholar]
	C. Cifuentes and M. Van Emmerik. Recovery of jump table case statements from binary code. In 7th International Workshop on Program Comprehension (IWPC), Pittsburgh, PA, USA, May 1999. IEEE Computer Society. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	W. D. Clinger. Proper tail recursion and space efficiency. In 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 174–185, Montreal, Canada, June 1998. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	ACM Press.Google Scholar[image: Google Scholar]
	C. ¸ Tăpu¸s, I.-H. Chung, and J. K. Hollingsworth. Active harmony: Towards automated performance tuning. In 2002 ACM/IEEE Conference on Supercomputing (SC), pages 1–11, Baltimore, Maryland, 2002. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen. On the static analysis of indirect control transfers in binaries. In 2000 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, Jun. 2000.Google Scholar[image: Google Scholar]
	F. C. Eigler and Red Hat, Inc. Problem solving with SystemTap. In Proc. of the Ottawa Linux Symposium, Ottawa, Ontario, July 2006. Citeseer.Google Scholar[image: Google Scholar]
	K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable variable and data type detection in a binary rewriter. In 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 51–60, Seattle, Washington, USA, 2013. ACM. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	W. Fang, B. P. Miller, and J. A. Kupsch. Automated tracing and visualization of software security structure and properties. In Ninth International Symposium on Visualization for Cyber Security (VizSec), pages 9–16, Seattle, Washington, 2012. ACM. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	GNU Project. GNU Binutils, http://www.gnu.org/software/binutils.Google Scholar[image: Google Scholar]
	L. C. Harris and B. P. Miller. Practical analysis of stripped binary code. ACM SIGARCH Computer Architecture News, 33(5):63–68, Dec. 2005. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Hex-Rays. IDA, https://www.hex-rays.com/products/ida/.Google Scholar[image: Google Scholar]
	E. R. Jacobson, A. R. Bernat, W. R. Williams, and B. P. Miller. Detecting code reuse attacks with a model of conformant program execution. In International Symposium on Engineering Secure Software and Systems (ESSoS), Munich, Germany, Feb. 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in stripped binaries. In 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools (PASTE), Szeged, Hungary, Sep. 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Jakstab. http://www.jakstab.org/home.Google Scholar[image: Google Scholar]
	D. Kästner and S. Wilhelm. Generic control flow reconstruction from assembly code. In Joint Conference on Languages, Compilers and Tools for Embedded Systems: Software and Compilers for Embedded Systems (LCTES/SCOPES), pages 46–55, Berlin, Germany, 2002. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for binary code. In 10th Working Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, May 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	J. Kinder and D. Kravchenko. Alternating control flow reconstruction. In 13th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Philadelphia, PA, Jan. 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In 20th International Conference on Computer Aided Verification (CAV), pages 423–427, Princeton, NJ, USA, July 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	G. Llort and H. Servat. Extrae. Barcelona Supercomputer Center, 2015.Google Scholar[image: Google Scholar]
	F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic runtime error repair and containment via recovery shepherding. In 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Edinburgh, United Kingdom, June 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation. In 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 190–200, Chicago, IL, USA, June 2005. ACM. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn parallel performance measurement tool. Computer, 28(11):37–46, Nov. 1995. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	J. Mußler, D. Lorenz, and F. Wolf. Reducing the overhead of direct application instrumentation using prior static analysis. In Proceedings of the 17th international conference on Parallel processing-Volume Part I (Euro-Par 2011), Bordeaux, France, sep 2011. Springer-Verlag. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	OllyDbg. http://www.ollydbg.de.Google Scholar[image: Google Scholar]
	P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D. Keromytis. Retrofitting Security in COTS Software with Binary Rewriting. In 26th IFIP TC-11 International Information Security Conference (IFIP SEC), pages 154–172, Hamburg, Germany, June 2011.Google Scholar[image: Google Scholar]
	Paradyn Project. Dyninst: Putting the Performance in High Performance Computing, http://www.dyninst.org.Google Scholar[image: Google Scholar]
	F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-force: Force-executing binary programs for security applications. In 23rd USENIX Conference on Security Symposium (SEC), San Diego, CA, Aug. 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	C. Reffett and D. Fleck. Securing applications with dyninst. In 2015 IEEE International Symposium on Technologies for Homeland Security (HST), pages 1–6, Waltham, MA, USA, April 2015.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	T. Reinbacher and J. Brauer. Precise control flow reconstruction using boolean logic. In Ninth ACM International Conference on Embedded Software (EMSOFT), pages 117–126, Taipei, Taiwan, Oct. 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the toolchain provenance of binary code. In 2011 International Symposium on Software Testing and Analysis (ISSTA), pages 100–110, Toronto, Ontario, Canada, July 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	N. Rosenblum, X. Zhu, and B. P. Miller. Who wrote this code? identifying the authors of program binaries. In 16th European Conference on Research in Computer Security (ESORICS), Leuven, Belgium, Sep. 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	N. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt. Learning to analyze binary computer code. In 23rd National Conference on Artificial Intelligence (AAAI), pages 798–804, Chicago, Illinois, July 2008. AAAI Press. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	K. A. Roundy. Hybrid analysis and control of malicious code, doctoral disstertation, University of Wisconsin-Madison, 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and S. Cranford. Open|SpeedShop: An open source infrastructure for parallel performance analysis. Scientific Programming, 16(2-3):105–121, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited. In Ninth Working Conference on Reverse Engineering (WCRE), Richmond, VA, USA, Oct 2002. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua. Static binary rewriting without supplemental information: Overcoming the tradeoff between coverage and correctness. In 20th Working Conference on Reverse Engineering WCRE, pages 52–61, Koblenz, Germany, October 2013.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	B. D. Sutter, B. D. Bus, K. D. Bosschere, P. Keyngnaert, and B. Demoen. On the static analysis of indirect control transfers in binaries. In International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pages 1013–1019, Las Vegas, Nevada, USA, June 2000.Google Scholar[image: Google Scholar]
	H. Theiling. Extracting safe and precise control flow from binaries. In the Seventh International Conference on Real-Time Systems and Applications (RTCSA), pages 23–30, Cheju Island, South Korea, Dec. 2000. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	V. van der Veen, D. Andriesse, E. Gökta¸s, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida. Practical context-sensitive cfi. In 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), Denver, Colorado, USA, Oct. 2015. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	L. Xu, F. Sun, and Z. Su. Constructing precise control flow graphs from binaries. Technical report, Technical Report CSE-2009-27, Department of Computer Science, UC Davis., 2009.Google Scholar[image: Google Scholar]
	M. Zhang and R. Sekar. Control flow integrity for cots binaries. In 22nd USENIX Conference on Security (USENIX), pages 337–352, Washington, D.C., Aug. 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	J. Zhou and G. Vigna. Detecting attacks that exploit application-logic errors through application-level auditing. In 20th Annual Computer Security Applications Conference (ACSAC), pages 168–178, Tucson, AZ, USA, Dec. 2004. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]

 Cited By
View all

 [image:]

 Index Terms

	Binary code is not easy
	Software and its engineering

	Software creation and management

	Software post-development issues

	Software reverse engineering

	Software organization and properties

	Software functional properties

	Formal methods

	Automated static analysis

 Recommendations

 	The poset structures admitting the extended binary Golay code to be a perfect code

		Brualdi et al. [Codes with a poset metric, Discrete Math. 147 (1995) 57-72] introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Golay code to be a 4-error-correcting perfect P-code. In this ...

Read More

	Detecting code clones in binary executables
ISSTA '09: Proceedings of the eighteenth international symposium on Software testing and analysis

		Large software projects contain significant code duplication, mainly due to copying and pasting code. Many techniques have been developed to identify duplicated code to enable applications such as refactoring, detecting bugs, and protecting intellectual ...

Read More

	The poset structures admitting the extended binary Hamming code to be a perfect code

		Brualdi et al. introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Hamming code to be a double-error-correcting perfect P-code. Our study is motivated by this example. In this paper we classify ...

Read More

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Publication

	Information
	Contributors

	Published in

 [image: cover image ACM Conferences]
ISSTA 2016: Proceedings of the 25th International Symposium on Software Testing and Analysis
July 2016
452 pages
ISBN:9781450343909
DOI:10.1145/2931037
	General Chair:
	[image: Author Picture]Andreas ZellerSaarland University, Germany
,
	Program Chair:
	[image: Author Picture]Abhik RoychoudhuryNational University of Singapore, Singapore

Copyright © 2016 ACM
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 18 July 2016

 Permissions
Request permissions about this article.
Request Permissions

Check for updates
[image: Check for updates on crossmark]

Author Tags
	Challenging code constructs
	Jump table model
	Static binary code analysis

Qualifiers
	research-article

Conference

 Acceptance Rates
Overall Acceptance Rate58of213submissions,27%

Upcoming Conference

 ISSTA '24

 	Sponsor:
	
 sigsoft
										

 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis

 September 16 - 20, 2024

 Vienna ,

 Austria

Funding Sources

	

 [image:]

Other Metrics
View Article Metrics

	Bibliometrics
	Citations66

	Article Metrics
	66
Total Citations
View Citations
	1,907
Total Downloads

	Downloads (Last 12 months)355
	Downloads (Last 6 weeks)41

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/2931037.2931047
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 [image: ACM Digital Library home]

 [image: ACM home]

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

