skip to main content
research-article

Real-time skeletal skinning with optimized centers of rotation

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Skinning algorithms that work across a broad range of character designs and poses are crucial to creating compelling animations. Currently, linear blend skinning (LBS) and dual quaternion skinning (DQS) are the most widely used, especially for real-time applications. Both techniques are efficient to compute and are effective for many purposes. However, they also have many well-known artifacts, such as collapsing elbows, candy wrapper twists, and bulging around the joints. Due to the popularity of LBS and DQS, it would be of great benefit to reduce these artifacts without changing the animation pipeline or increasing the computational cost significantly. In this paper, we introduce a new direct skinning method that addresses this problem. Our key idea is to pre-compute the optimized center of rotation for each vertex from the rest pose and skinning weights. At runtime, these centers of rotation are used to interpolate the rigid transformation for each vertex. Compared to other direct skinning methods, our method significantly reduces the artifacts of LBS and DQS while maintaining real-time performance and backwards compatibility with the animation pipeline.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alexa, M. 2002. Linear combination of transformations. ACM Trans. Graph. 21, 3 (July), 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: Shape completion and animation of people. ACM Trans. Graph. 24, 3 (July), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Autodesk, 2016. Creating a character rig by Maya learning channel. https://www.youtube.com/playlist?list=PL8hZ6hQCGHMXKqaX9Og4Ow52jsU_Y5veH. (accessed January 19, 2016).Google ScholarGoogle Scholar
  4. Bloom, C., and Blow, J., 2004. Errors and omissions in Marc Alexa's "Linear combination of transformations". http://www.cbloom.com/3d/techdocs/lcot_errors.pdf. (accessed January 19, 2016).Google ScholarGoogle Scholar
  5. Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2 (Apr.), 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2007. Physically based rigging for deformable characters. Graph. Models 69, 1 (Jan.), 71--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. 27, 3 (Aug.), 91:1--91:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. 2007. Deformation styles for spline-based skeletal animation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R. W., and Gross, M. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 165--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Horn, B. K. P., Hilden, H. M., and Negahdaripour, S. 1988. Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5, 7 (Jul), 1127--1135.Google ScholarGoogle ScholarCross RefCross Ref
  12. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (Dec.), 165:1--165:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July), 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (July), 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. Forum 31, 5 (Aug.), 1577--1586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (July), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kabsch, W. 1978. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 34, 827--828.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kavan, L., and Sorkine, O. 2012. Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (Nov.), 196:1--196:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kavan, L., and Žára, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, ACM, I3D '05, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kavan, L., Collins, S., Žára, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4 (Nov.), 105:1--105:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1--93:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim, Y., and Han, J. 2014. Bulging-free dual quaternion skinning. Comput. Animat. Virtual Worlds 25, 3-4, 321--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: Real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Sept.), 99:1--99:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lewis, J. P., and Anjyo, K.-i. 2010. Direct manipulation blendshapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin skin elastodynamics. ACM Trans. Graph. 32, 4 (July), 49:1--49:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3 (Aug.), 78:1--78:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Liu, L., Yin, K., Wang, B., and Guo, B. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6 (Nov.), 215:1--215:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Loper, M., Mahmood, N., and Black, M. J. 2014. Mosh: Motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6 (Nov.), 220:1--220:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Proceedings of Graphics Interface '88, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Magnenat-Thalmann, N., Cordier, F., Seo, H., and Papagianakis, G. 2004. Modeling of bodies and clothes for virtual environments. In Cyberworlds, 2004 International Conference on, 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (July), 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4 (Oct.), 1400--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July), 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mukai, T. 2015. Building helper bone rigs from examples. In Proceedings of the 19th ACM Symposium on Interactive 3D Graphics and Games, 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Öztireli, A. C., Baran, I., Popa, T., Dalstein, B., Sumner, R. W., and Gross, M. 2013. Differential blending for expressive sketch-based posing. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3 (July), 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Park, S. I., and Hodgins, J. K. 2008. Data-driven modeling of skin and muscle deformation. ACM Trans. Graph. 27, 3 (Aug.), 96:1--96:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Rémillard, O., and Kry, P. G. 2013. Embedded thin shells for wrinkle simulation. ACM Trans. Graph. 32, 4 (July), 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6 (Dec.), 164:1--164:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shoemake, K. 1985. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '85, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics, 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3 (July), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tsoli, A., Mahmood, N., and Black, M. J. 2014. Breathing life into shape: Capturing, modeling and animating 3D human breathing. ACM Trans. Graph. 33, 4 (July), 52:1--52:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph. 32, 4 (July), 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., and Cani, M.-P. 2014. Robust iso-surface tracking for interactive character skinning. ACM Trans. Graph. 33, 6 (Nov.), 189:1--189:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Comput. Graph. Forum 26, 3, 265--274.Google ScholarGoogle ScholarCross RefCross Ref
  57. Yang, X., Somasekharan, A., and Zhang, J. J. 2006. Curve skeleton skinning for human and creature characters: Research articles. Comput. Animat. Virtual Worlds 17, 3-4 (July), 281--292. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time skeletal skinning with optimized centers of rotation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader