skip to main content
research-article
Open Access

Computational network design from functional specifications

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

Skip Supplemental Material Section

Supplemental Material

a131.mp4

mp4

285.3 MB

References

  1. AlHalawani, S., and Mitra, N. J. 2015. Advances in Visual Computing: ISVC 2015, Part II. ch. Congestion-Aware Warehouse Flow Analysis and Optimization, 702--711.Google ScholarGoogle Scholar
  2. AlHalawani, S., Yang, Y.-L., Liu, H., and Mitra, N. J. 2013. Interactive facades: Analysis and synthesis of semi-regular facades. Computer Graphics Forum (Proc. EUROGRAPHICS) 32, 2pt2, 215--224.Google ScholarGoogle Scholar
  3. AlHalawani, S., Yang, Y.-L., Wonka, P., and Mitra, N. J. 2014. What makes London work like London. Computer Graphics Forum (Proc. SGP) 33.Google ScholarGoogle Scholar
  4. Aliaga, D., Vanegas, C., and Benes, B. 2008. Interactive Example-Based Urban Layout Synthesis. ACM TOG (Siggraph Asia) 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bao, F., Yan, D.-M., Mitra, N. J., and Wonka, P. 2013. Generating and exploring good building layouts. ACM TOG (Siggraph) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Baswana, S., and Sen, S. 2007. A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Struct. Algorithms 30, 4, 532--563. Google ScholarGoogle ScholarCross RefCross Ref
  7. Board, T. R. 2010. Highway Capacity Manual. Transportation Research Board.Google ScholarGoogle Scholar
  8. Chen, G., Esch, G., Wonka, P., Müller, P., and Zhang, E. 2008. Interactive procedural street modeling. ACM TOG (Siggraph) 27, 3, 103:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proc. ACM SIGGRAPH, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Galin, E., Peytavie, A., Guérin, E., and Benes, B. 2011. Authoring hierarchical road networks. Computer Graphics Forum 29, 7, 2021--2030.Google ScholarGoogle ScholarCross RefCross Ref
  11. Garcia-Dorado, I., Aliaga, D. G., and Ukkusuri, S. V. 2014. Designing large-scale interactive traffic animations for urban modeling. Computer Graphics Forum (Proc. EUROGRAPHICS) 33, 2, 411--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Génevaux, J.-D., Galin, E., Guérin, E., Peytavie, A., and Beneš, B. 2013. Terrain generation using procedural models based on hydrology. ACM TOG (Siggraph) 32, 4, 143:1--143:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gurobi Optimization, Inc., 2014. Gurobi optimizer reference manual.Google ScholarGoogle Scholar
  14. Handy, S., Paterson, R., and Butler, K. 2003. Planning for street connectivity: Getting from here to there. In Planning Advisory Service Report.Google ScholarGoogle Scholar
  15. Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models. Int. Journal of Computer Vision 1, 4, 321--331.Google ScholarGoogle ScholarCross RefCross Ref
  16. Koster, A., Kutschka, M., and Raack, C. 2010. Towards robust network design using integer linear programming techniques. In Next Generation Internet (NGI), 2010 6th EURO-NF Conference on, 1--8.Google ScholarGoogle Scholar
  17. Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker, L. 2012. Recent development and applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements 5, 3&4, 128--138.Google ScholarGoogle Scholar
  18. Liu, H., Yang, Y.-L., AlHalawani, S., and Mitra, N. J. 2013. Constraint-aware interior layout exploration for precast concrete-based buildings. The Visual Computer (CGI Special Issue). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Luathep, P., Sumalee, A., Lam, W. H., Li, Z.-C., and Lo, H. K. 2011. Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach. Transportation Research Part B: Methodological 45, 5, 808--827.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ma, C., Vining, N., Lefebvre, S., and Sheffer, A. 2014. Game level layout from design specification. Computer Graphics Forum (Proc. EUROGRAPHICS) 33, 2, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Maréchal, N., Guérin, E., Galin, E., Merillou, S., and Mrillou, N. 2010. Procedural generation of roads. Computer Graphics Forum 29, 2, 429--438.Google ScholarGoogle ScholarCross RefCross Ref
  22. Marshall, S. 2005. Streets & Pattern. Spon press, New York.Google ScholarGoogle Scholar
  23. MATSim, 2015. Matsim, http://www.matsim.org/.Google ScholarGoogle Scholar
  24. Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM TOG (Siggraph Asia) 29, 6, 181:1--181:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Meyer, M., and Miller, E. 2000. Urban Transportation Planning. McGraw-Hill.Google ScholarGoogle Scholar
  26. Miller, C. E., Tucker, A. W., and Zemlin, R. A. 1960. Integer programming formulation of traveling salesman problems. J. ACM 7, 4, 326--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nishida, G., Garcia-Dorado, I., and Aliaga, D. G. 2015. Example-driven procedural urban roads. Computer Graphics Forum, 1--14.Google ScholarGoogle Scholar
  28. Ortzar, J. d. D., and Willumsen, L. 2011. Modelling Transport. Wiley.Google ScholarGoogle Scholar
  29. Parish, Y. I. H., and Müller, P. 2001. Procedural modeling of cities. In Proc. ACM SIGGRAPH, 301--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Peng, C.-H., Barton, M., Jiang, C., and Wonka, P. 2014. Exploring quadrangulations. ACM TOG 33, 1, 12:1--12:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Peng, C.-H., Yang, Y.-L., and Wonka, P. 2014. Computing layouts with deformable templates. ACM TOG (Siggraph) 33, 4, 99:1--99:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A.-G., and Prusinkiewicz, P. 2005. Modeling and visualization of leaf venation patterns. ACM TOG (Siggraph) 24, 3, 702--711. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sewall, J., Wilkie, D., Merrell, P., and Lin, M. 2010. Continuum Traffic Simulation. Computer Graphics Forum (Proc. EUROGRAPHICS) 29, 2, 439--448.Google ScholarGoogle ScholarCross RefCross Ref
  34. Sewall, J., Wilkie, D., and Lin, M. C. 2011. Interactive hybrid simulation of large-scale traffic. ACM TOG (Siggraph Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Southworth, M., and Ben-Joseph, E. 2003. Streets and the Shaping of Towns and Cities. Island Press, Wasington DC.Google ScholarGoogle Scholar
  36. Vanegas, C. A., Aliaga, D. G., Beneš, B., and Waddell, P. A. 2009. Interactive design of urban spaces using geometrical and behavioral modeling. ACM TOG (Siggraph Asia) 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and Waddell, P. 2012. Inverse design of urban procedural models. ACM TOG (Siggraph Asia) 31, 6, 168:1--168:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. VISSIM, 2015. http://vision-traffic.ptvgroup.com/.Google ScholarGoogle Scholar
  39. Wardrop, J. 1952. Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers 1, 2, 325--378.Google ScholarGoogle ScholarCross RefCross Ref
  40. Weber, B., Müller, P., Wonka, P., and Gross, M. H. 2009. Interactive geometric simulation of 4D cities. Computer Graphics Forum (Proc. EUROGRAPHICS) 28, 2, 481--492.Google ScholarGoogle ScholarCross RefCross Ref
  41. Wilkie, D., Sewall, J., and Lin, M. C. 2013. Flow reconstruction for data-driven traffic animation. ACM TOG (Siggraph) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yang, H., and Bell, M. 1998. Models and algorithms for road network design: a review and some new developments. Transport Reviews 18, 3.Google ScholarGoogle ScholarCross RefCross Ref
  43. Yang, Y.-L., Wang, J., Vouga, E., and Wonka, P. 2013. Urban pattern: Layout design by hierarchical domain splitting. ACM TOG (Siggraph Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: Automatic optimization of furniture arrangement. ACM TOG (Siggraph) 30, 4, 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational network design from functional specifications

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader