skip to main content
research-article
Open Access

Reflectance modeling by neural texture synthesis

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We extend parametric texture synthesis to capture rich, spatially varying parametric reflectance models from a single image. Our input is a single head-lit flash image of a mostly flat, mostly stationary (textured) surface, and the output is a tile of SVBRDF parameters that reproduce the appearance of the material. No user intervention is required. Our key insight is to make use of a recent, powerful texture descriptor based on deep convolutional neural network statistics for "softly" comparing the model prediction and the examplars without requiring an explicit point-to-point correspondence between them. This is in contrast to traditional reflectance capture that requires pointwise constraints between inputs and outputs under varying viewing and lighting conditions. Seen through this lens, our method is an indirect algorithm for fitting photorealistic SVBRDFs. The problem is severely ill-posed and non-convex. To guide the optimizer towards desirable solutions, we introduce a soft Fourier-domain prior for encouraging spatial stationarity of the reflectance parameters and their correlations, and a complementary preconditioning technique that enables efficient exploration of such solutions by L-BFGS, a standard non-linear numerical optimizer.

Skip Supplemental Material Section

Supplemental Material

a65.mp4

mp4

297.8 MB

References

  1. Aittala, M., Weyrich, T., and Lehtinen, J. 2015. Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34, 4, 110:1--110:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barron, J., and Malik, J. 2015. Shape, illumination, and reflectance from shading. IEEE TPAMI (to appear).Google ScholarGoogle Scholar
  3. Boivin, S., and Gagalowicz, A. 2001. Image-based rendering of diffuse, specular and glossy surfaces from a single image. In Proc. ACM SIGGRAPH, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Clark, R., 2010. Crazybump. http://www.crazybump.com, Last access: 16 Jan 2016.Google ScholarGoogle Scholar
  5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. ACM SIGGRAPH, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29, 4, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2011. Appgen: interactive material modeling from a single image. ACM Trans. Graph. 30, 6, 146:1--146:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Efros, A. A., and Freeman, W. T. 2001. Image quilting for texture synthesis and transfer. In Proc. ACM SIGGRAPH, 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In Proc. International Conference on Computer Vision (ICCV '99), vol. 2, 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Galerne, B., Gousseau, Y., and Morel, J.-M. 2010. Random phase textures: Theory and synthesis. IEEE Transactions in Image Processing 20, 1, 257--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gatys, L. A., Ecker, A. S., and Bethge, M. 2015. A neural algorithm of artistic style. CoRR abs/1508.06576.Google ScholarGoogle Scholar
  12. Gatys, L. A., Ecker, A. S., and Bethge, M. 2015. Texture synthesis using convolutional neural networks. In Advances in Neural Information Processing Systems 28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Graham, P., Tunwattanapong, B., Busch, J., Yu, X., Jones, A., Debevec, P., and Ghosh, A. 2013. Measurement-Based Synthesis of Facial Microgeometry. Computer Graphics Forum 32, 2pt3, 335--344.Google ScholarGoogle Scholar
  14. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proc. ACM SIGGRAPH, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In Proc. ACM SIGGRAPH, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, L., Yang, Y., Deng, Y., and Yu, Y 2015. Densebox: Unifying landmark localization with end to end object detection. CoRR abs/1509.04874.Google ScholarGoogle Scholar
  17. Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., and Kopf, J. 2015. Self Tuning Texture Optimization. Computer Graphics Forum 34, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3, 795--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proc. IEEE, 2278--2324.Google ScholarGoogle Scholar
  20. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proc. Eurographics Symposium on Rendering, 117--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Portilla, J., and Simoncelli, E. P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40, 1, 49--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rabin, J., Peyré, G., Delon, J., and Bernot, M. 2011. Wasserstein barycenter and its application to texture mixing. In Proc. Scale Space and Variational Methods in Computer Vision (SSVM), vol. 6667, 435--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Razavian, A. S., Azizpour, H., Sullivan, J., and Carls-son, S. 2014. CNN features off-the-shelf: An astounding baseline for recognition. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Simonyan, K., and Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.Google ScholarGoogle Scholar
  26. Super, B., and Bovik, A. 1995. Shape from texture using local spectral moments. IEEE TPAMI 17, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. 2015. Going deeper with convolutions. In Proc. CVPR.Google ScholarGoogle Scholar
  28. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., and Shum, H.-Y. 2002. Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21, 3, 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Vedaldi, A., and Lenc, K. 2014. MatConvNet - convolutional neural networks for MATLAB. CoRR abs/1412.4564.Google ScholarGoogle Scholar
  30. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, C.-P., Snavely, N., and Marschner, S. 2011. Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Trans. Graph. 30, 6, 172:1--172:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wei, L.-Y., Han, J., Zhou, K., Bao, H., Guo, B., and Shum, H.-Y. 2008. Inverse texture synthesis. ACM Trans. Graph. 27, 3, 52:1--52:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 3, 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zickler, T., Ramamoorthi, R., Enrique, S., and Belhumeur, P. N. 2006. Reflectance sharing: predicting appearance from a sparse set of images of a known shape. IEEE TPAMI 28, 8, 1287--1302. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reflectance modeling by neural texture synthesis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 4
          July 2016
          1396 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2897824
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2016
          Published in tog Volume 35, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader