skip to main content
10.1145/2897518.2897584acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article
Public Access
Best Paper

Reed-Muller codes achieve capacity on erasure channels

Published:19 June 2016Publication History

ABSTRACT

We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes, our method exploits code symmetry. In particular, the technique applies to any sequence of linear codes where the block lengths are strictly increasing, the code rates converge, and the permutation group of each code is doubly transitive. In a nutshell, we show that symmetry alone implies near-optimal performance.

An important consequence of this result is that a sequence of Reed-Muller codes with increasing block length and converging rate achieves capacity. This possibility has been suggested previously in the literature, but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to affine-invariant codes and, thus, to all extended primitive narrow-sense BCH codes. This is used to resolve, in the affirmative, the existence question for capacity-achieving sequences of binary cyclic codes. The primary tools used in the proofs are the sharp threshold property for symmetric monotone boolean functions and the area theorem for extrinsic information transfer (EXIT) functions.

References

  1. E. Abbe, A. Shpilka, and A. Wigderson. Reed-Muller codes for random erasures and errors. In Proc. of the Annual ACM Symp. on Theory of Comp., STOC ’15, pages 297–306, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Abbe, A. Shpilka, and A. Wigderson. Reed-Muller codes for random erasures and errors. IEEE Trans. Inform. Theory, 61(10):5229–5252, Oct 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimization problems. Nature, 435(7043):759–764, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Ahlswede and G. Dueck. Good codes can be produced by a few permutations. IEEE Trans. Inform. Theory, 28(3):430–443, May 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Arıkan. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun. Letters, 12(6):447–449, June 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. E. Arıkan. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inform. Theory, 55(7):3051–3073, July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Arıkan. A survey of Reed-Muller codes from polar coding perspective. In Proc. IEEE Inform. Theory Workshop, pages 1–5, Jan 2010.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Ashikhmin, G. Kramer, and S. ten Brink. Extrinsic information transfer functions: model and erasure channel properties. IEEE Trans. Inform. Theory, 50(11):2657–2674, Nov. 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding and decoding: Turbo-codes. In Proc. IEEE Int. Conf. Commun., volume 2, pages 1064–1070, Geneva, Switzerland, May 1993. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford University Press, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson, and N. Linial. The influence of variables in product spaces. Israel Journal of Mathematics, 77(1-2):55–64, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Bourgain and G. Kalai. Influences of variables and threshold intervals under group symmetries. Geometric & Functional Analysis, 7(3):438–461, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation-immune functions. In Advances in Cryptology–CRYPTO’91, pages 86–100. Springer, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Canteaut, C. Carlet, P. Charpin, and C. Fontaine. On cryptographic properties of the cosets of R(1, m). IEEE Trans. Inform. Theory, 47(4):1494–1513, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Carlet, D. K. Dalai, K. C. Gupta, and S. Maitra. Algebraic immunity for cryptographically significant boolean functions: analysis and construction. IEEE Trans. Inform. Theory, 52(7):3105–3121, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Carlet and P. Gaborit. On the construction of balanced boolean functions with a good algebraic immunity. In Proc. IEEE Int. Symp. Inform. Theory, pages 1101–1105, Sept 2005.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Coffey and R. Goodman. Any code of which we cannot think is good. IEEE Trans. Inform. Theory, 36(6):1453–1461, Nov 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Coja-Oghlan. The asymptotic k-SAT threshold. In Proc. of the Annual ACM Symp. on Theory of Comp., STOC ’14, pages 804–813, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. J. Costello, Jr. and G. D. Forney, Jr. Channel coding: The road to channel capacity. Proc. of the IEEE, 95(6):1150–1177, June 2007.Google ScholarGoogle ScholarCross RefCross Ref
  20. P. Delsarte, J. Goethals, and F. M. Williams. On generalized Reed-Muller codes and their relatives. Inform. and Control, 16(5):403–442, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  21. F. Didier. A new upper bound on the block error probability after decoding over the erasure channel. IEEE Trans. Inform. Theory, 52(10):4496–4503, Oct 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Didier and J.-P. Tillich. Computing the algebraic immunity efficiently. In Fast Software Encryption, pages 359–374. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Ding, A. Sly, and N. Sun. Proof of the satisfiability conjecture for large k. In Proc. of the Annual ACM Symp. on Theory of Comp., STOC ’15, pages 59–68, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Ann. of Math., pages 439–485, 2005.Google ScholarGoogle Scholar
  25. I. Dumer. Recursive decoding and its performance for low-rate Reed-Muller codes. IEEE Trans. Inform. Theory, 50(5):811–823, May 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. I. Dumer. Soft-decision decoding of Reed-Muller codes: a simplified algorithm. IEEE Trans. Inform. Theory, 52(3):954–963, March 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. I. Dumer and P. G. Farrell. Erasure correction performance of linear block codes. In Algebraic Coding, pages 316–326. Springer, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. I. Dumer and K. Shabunov. Soft-decision decoding of Reed-Muller codes: recursive lists. IEEE Trans. Inform. Theory, 52(3):1260–1266, March 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Friedgut and J. Bourgain. Sharp thresholds of graph properties, and the k-SAT problem. J. Amer. Math. Soc., 12(4):1017–1054, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  30. E. Friedgut and G. Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124(10):2993–3002, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. G. Gallager. Low-Density Parity-Check Codes. The M.I.T. Press, Cambridge, MA, USA, 1963.Google ScholarGoogle Scholar
  32. P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting for polynomials and for approximate functions. In Proc. of the Annual ACM Symp. on Theory of Comp., STOC ’91, pages 33–42, New York, NY, USA, 1991. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Information processing letters, 43(4):169–174, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Gérard and J.-P. Tillich. Using tools from error correcting theory in linear cryptanalysis. Adv. Linear Cryptanalysis of Block and Stream Ciphers, 7:87, 2011.Google ScholarGoogle Scholar
  35. E. Grigorescu, T. Kaufman, and M. Sudan. 2-transitivity is insufficient for local testability. In Annual IEEE Conf. on Comp. Complex., pages 259–267, June 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge University Press, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. Kalai and S. Safra. Threshold phenomena and influence with some perspectives from mathematics, computer science, and economics. Comp. Complexity and Stat. Phy., Santa Fe Institute Studies in Sci. of Complexity, 19517738, 2005.Google ScholarGoogle Scholar
  38. T. Kasami, S. Lin, and W. W. Peterson. New generalizations of the Reed-Muller codes–I: Primitive codes. IEEE Trans. Inform. Theory, 14(2):189–199, Mar 1968. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. T. Kasami and N. Tokura. On the weight structure of Reed-Muller codes. IEEE Trans. Inform. Theory, 16(6):752–759, Nov 1970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Kasami, N. Tokura, and S. Azumi. On the weight enumeration of weights less than 2.5d of Reed-Muller codes. Inform. and Control, 30(4):380 – 395, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  41. T. Kaufman, S. Lovett, and E. Porat. Weight distribution and list-decoding size of Reed-Muller codes. IEEE Trans. Inform. Theory, 58(5):2689–2696, May 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Kaufman and M. Viderman. Locally testable vs. locally decodable codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 670–682. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. ¸ Sa¸so˘ glu, and R. L. Urbanke. Reed-Muller codes achieve capacity on erasure channels. Submitted to IEEE Trans. Inform. Theory, 2016. {Online}. Available: http://arxiv.org/pdf/1601.04689.pdf.Google ScholarGoogle Scholar
  44. S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, and R. L. Urbanke. Comparing the bit-MAP and block-MAP decoding thresholds of Reed-Muller codes on BMS Channels. Submitted to ISIT, 2016.Google ScholarGoogle Scholar
  45. S. Kudekar, T. Richardson, and R. L. Urbanke. Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans. Inform. Theory, 59(12):7761–7813, Dec. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. Kudekar, T. J. Richardson, and R. L. Urbanke. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inform. Theory, 57(2):803–834, Feb. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Kumar, A. J. Young, N. Macris, and H. D. Pfister. Threshold saturation for spatially-coupled LDPC and LDGM codes on BMS channels. IEEE Trans. Inform. Theory, 60(12):7389–7415, Dec. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  48. M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov. Iterative decoding threshold analysis for LDPC convolutional codes. IEEE Trans. Inform. Theory, 56(10):5274–5289, Oct. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Lin. RM codes are not so bad. In Proc. IEEE Inform. Theory Workshop, June 1993. Invited talk.Google ScholarGoogle Scholar
  50. S. Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and Applications. Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. ISBN-13: 978-0130426727.Google ScholarGoogle Scholar
  52. M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Efficient erasure correcting codes. IEEE Trans. Inform. Theory, 47(2):569–584, Feb. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, 45(2):399–431, March 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes, volume 16. Elsevier, 1977.Google ScholarGoogle Scholar
  55. G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problems of Inform. Transm., 10(2):101–108, 1974.Google ScholarGoogle Scholar
  56. C. Méasson, A. Montanari, T. J. Richardson, and R. Urbanke. The generalized area theorem and some of its consequences. IEEE Trans. Inform. Theory, 55(11):4793–4821, Nov. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. C. Méasson, A. Montanari, and R. L. Urbanke. Maxwell construction: The hidden bridge between iterative and maximum a posteriori decoding. IEEE Trans. Inform. Theory, 54(12):5277–5307, Dec. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Mondelli, S. H. Hassani, and R. L. Urbanke. From polar to Reed-Muller codes: A technique to improve the finite-length performance. IEEE Trans. Commun., 62(9):3084–3091, Sept 2014.Google ScholarGoogle ScholarCross RefCross Ref
  59. D. Muller. Application of Boolean algebra to switching circuit design and to error detection. IRE Tran. on Electronic Computers, EC-3(3):6–12, Sept 1954.Google ScholarGoogle Scholar
  60. O. Ordentlich and U. Erez. Cyclic-coded integer-forcing equalization. IEEE Trans. Inform. Theory, 58(9):5804–5815, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. I. Reed. A class of multiple-error-correcting codes and the decoding scheme. IRE Tran. on Information Theory, 4(4):38–49, September 1954.Google ScholarGoogle ScholarCross RefCross Ref
  62. T. J. Richardson and R. L. Urbanke. Modern Coding Theory. Cambridge University Press, New York, NY, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  63. L. Russo. An approximate zero-one law. Prob. Th. and Related Fields, 61(1):129–139, 1982.Google ScholarGoogle Scholar
  64. R. Saptharishi, A. Shpilka, and B. L. Volk. Efficiently decoding Reed-Muller codes from random errors. {Online}. Available: http://arxiv.org/abs/1503.09092v2, 2015.Google ScholarGoogle Scholar
  65. R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random generator. In Proc. IEEE Symp. on the Found. of Comp. Sci., pages 648–657, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. C. E. Shannon. A mathematical theory of communication. The Bell Syst. Techn. J., 27:379–423, 623–656, July / Oct. 1948.Google ScholarGoogle ScholarCross RefCross Ref
  67. V. M. Sidel’nikov and A. Pershakov. Decoding of Reed-Muller codes with a large number of errors. Problems of Inform. Transm., 28(3):80–94, 1992.Google ScholarGoogle Scholar
  68. N. Sloane and E. Berlekamp. Weight enumerator for second-order Reed-Muller codes. IEEE Trans. Inform. Theory, 16(6):745–751, Nov 1970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inform. Theory, 42(6):1723–1731, Nov 1996. Google ScholarGoogle ScholarCross RefCross Ref
  70. A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codes. In Proc. IEEE Symp. on the Found. of Comp. Sci., pages 638–647, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. M. Talagrand. Isoperimetry, logarithmic sobolev inequalities on the discrete cube, and margulis’ graph connectivity theorem. Geometric & Functional Analysis, 3(3):295–314, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  72. M. Talagrand. On Russo’s approximate zero-one law. The Ann. of Prob., pages 1576–1587, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  73. S. ten Brink. Convergence of iterative decoding. Electronic Letters, 35(10):806–808, May 1999.Google ScholarGoogle ScholarCross RefCross Ref
  74. J.-P. Tillich and G. Zémor. Discrete isoperimetric inequalities and the probability of a decoding error. Combinatorics, Probability and Computing, 9(05):465–479, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. J.-P. Tillich and G. Zemor. The Gaussian isoperimetric inequality and decoding error probabilities for the Gaussian channel. IEEE Trans. Inform. Theory, 50(2):328–331, Feb 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. S. Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci., 7(4):169–174, 1992.Google ScholarGoogle Scholar
  77. G. Zémor. Threshold effects in codes. In Algebraic Coding, pages 278–286. Springer, 1994.Google ScholarGoogle Scholar

Index Terms

  1. Reed-Muller codes achieve capacity on erasure channels

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader