skip to main content
10.1145/280814.280925acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article
Open Access
Seminal Paper

Efficient simulation of light transport in scenes with participating media using photon maps

Published:24 July 1998Publication History

ABSTRACT

This paper presents a new method for computing global illumination in scenes with participating media. The method is based on bidirectional Monte Carlo ray tracing and uses photon maps to increase efficiency and reduce noise. We remove previous restrictions limiting the photon map method to surfaces by introducing a volume photon map containing photons in participating media. We also derive a new radiance estimate for photons in the volume photon map. The method is fast and simple, but also general enough to handle nonhomogeneous media and anisotropic scattering. It can efficiently simulate effects such as multiple volume scattering, color bleeding between volumes and surfaces, and volume caustics (light reflected from or transmitted through specular surfaces and then scattered by a medium). The photon map is decoupled from the geometric representation of the scene, making the method capable of simulating global illumination in scenes containing complex objects. These objects do not need to be tessellated; they can be instanced, or even represented by an implicit function. Since the method is based on a bidirectional simulation, it automatically adapts to illumination and view. Furthermore, because the use of photon maps reduces noise and aliasing, the method is suitable for rendering of animations.

References

  1. 1.James R. Arvo. Backward ray tracing. ACM SIGGRAPH 86 Course Notes Developments in Ray Tracing, 12, 1986.Google ScholarGoogle Scholar
  2. 2.Jon L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509- 517, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3.N. Bhate and A. Tokuta. Photorealistic volume rendering of media with directional scattering. Proceedings of the 3rd Eurographics Workshop on Rendering, pages 227-245, 1992.Google ScholarGoogle Scholar
  4. 4.Philippe Blasi, Bertrand Le Sa~c, and Christophe Schlick. A rendering algorithm for discrete volume density objects. Computer Graphics Forum (Proceedings of Eurographics '93), 12(3):201- 210, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  5. 5.James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. Proceedings of A CM SIGGRAPH 82, pages 21-29, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6.Per H. Christensen. Global illumination for professional 3D animation, visualization, and special effects. Rendering Techniques '97 (Proceedings of the 8th Eurographics Workshop on Rendering), pages 321-326, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 7.David Doubilet. Light in the Sea. National Geographic, 1989.Google ScholarGoogle Scholar
  8. 8.David S. Ebert. Volumetric modeling with implicit functions (A cloud is born). Visual Proceedings of ACM SIGGRAPH 97, page 147, 1997. Technical Sketch. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9.David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. Texturing and Modeling: A Procedural Approach. AP Professional, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10.Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, CA, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11.Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm. Proceedings of A CM SIG- GRAPH 91, pages 197-206, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. 12.Paul Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Proceedings of ACM SIGGRAPH 90, pages 145-154, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.Henrik Wann Jensen. Global illumination using photon maps. Rendering Techniques '96 (Proceedings of the 7th Eurographics Workshop on Rendering), pages 21-30, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.Henrik Wann Jensen. The Photon Map in Global Illumination. PhD thesis, Technical University of Denmark, Lyngby, Denmark, 1996.Google ScholarGoogle Scholar
  15. 15.Henrik Wann Jensen. Rendering caustics on non-Lambertian surfaces. Proceedings of Graphics Interface '96, pages 116-121, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16.James T. Kajiya and Brian P. von Herzen. Ray tracing volume densities. Proceedings of ACM SIGGRAPH 84, pages 165-174, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.R. Victor Klassen. Modeling the effect of the atmosphere on light. ACM Transactions on Graphics, 6(3):215-237, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18.Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. Proceedings of Compugraphics '93, pages 145-153, 1993.Google ScholarGoogle Scholar
  19. 19.Eric P. Lafortune and Yves D. Willems. Rendering participating media with bidirectional path tracing. Rendering Techniques '96 (Proceedings of the 7th Eurographics Workshop on Rendering), pages 92-101, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20.Eric Langu6nou, Kadi Bouatouch, and Michelle Chelle. Global illumination in presence of participating media with general properties. Proceedings of the 5th Eurographics Workshop on Rendering, pages 69-85, 1994.Google ScholarGoogle Scholar
  21. 21.Nelson L. Max. Light diffusion through clouds and haze. Compurer Vision, Graphics, and Image Processing, 33(3):280-292, March 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22.Nelson L. Max. Efficient light propagation for multiple anisotropic volume scattering. Proceedings of the 5th Eurographics Workshop on Rendering, pages 87-104, 1994.Google ScholarGoogle Scholar
  23. 23.Gustav Mie. Beitrgge zur optik trfiber medien, speziell kolloidaler metallSsungen. Annalen der Physik, 25(3):377-445, 1908.Google ScholarGoogle ScholarCross RefCross Ref
  24. 24.Harald Niederreiter. Random Number Generation and Quasi- Monte Carlo Methods, volume 63 of Regional Conference Seties in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. Display of clouds taking into account multiple anisotropic scattering and sky light. Proceedings of A CM SIGGRAPH 96, pages 379-386, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26.S. N. Pattanaik and S. P. Mudur. Computation of global illumination in a participating medium by Monte Carlo simulation. Journal on Visualization and Computer Animation, 4(3):133- 152, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  27. 27.Frederic P6rez, Xavier Pueyo, and Francois X. Sillion. Global illumination techniques for the simulation of participating media. Rendering Techniques '97 (Proceedings of the 8th Eurographics Workshop on Rendering), pages 309-320, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. 28.Ken Perlin. An image synthesizer. Proceedings of A CM SIG- GRAPH 85, pages 287-296, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29.Holly E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, Cornell University, Ithaca, New York, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30.Holly E. Rushmeier. Rendering participating media: Problems and solutions from application areas. Proceedings of the 5th Eurographics Workshop on Rendering, pages 35-56, 1994.Google ScholarGoogle Scholar
  31. 31.Holly E. Rushmeier and Kenneth E. Torrance. The zonal method for calculating light intensities in the presence of a participating medium. Proceedings of ACM SIGGRAPH 87, pages 293-302, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32.Robert Siegel and John R. Howell. Thermal Radiation Heat Transfer, 3rd Edition. Hemisphere Publishing Corporation, New York, 1992.Google ScholarGoogle Scholar
  33. 33.Jos Stam. Multiple scattering as a diffusion process. Rendering Techniques '95 (Proceedings of the 6th Eurographics Workshop on Rendering), pages 41-50, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  34. 34.Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. Proceedings of the 5th Eurographics Workshop on Rendering, pages 147-162, 1994.Google ScholarGoogle Scholar
  35. 35.Eric Veach and Leonidas J. Guibas. Metropolis light transport. Proceedings of ACM SIGGRAPH 97, pages 65-76, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36.Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald P. Greenberg. Global illumination using local linear density estimation. ACM Transactions on Graphics, 16(3):217-259, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. 37.Gregory J. Ward. The RADIANCE lighting simulation and rendering system. Proceedings of A CM SIGGRAPH 94, pages 459- 472, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 38.Mark Watt. Light-water interaction using backward beam tracing. Proceedings of ACM SIGGRAPH 90, pages 377-385, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient simulation of light transport in scenes with participating media using photon maps

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader