skip to main content
research-article
Public Access

Energy-Efficient Time Synchronization in Wireless Sensor Networks via Temperature-Aware Compensation

Published:15 April 2016Publication History
Skip Abstract Section

Abstract

Time synchronization is critical for wireless sensor networks (WSNs) because data fusion and duty cycling schemes all rely on synchronized schedules. Traditional synchronization protocols assume that wireless channels are available around the clock. However, this assumption is not true for WSNs deployed in intertidal zones. In this article, we present TACO, a synchronization scheme for WSNs with intermittent wireless channels and volatile environmental temperatures. TACO estimates the correlation of clock skews and temperatures by solving a constrained least squares problem and continuously adjusts the local time with the predicted clock skews according to temperatures. Our experiment conducted in an intertidal zone shows that TACO can greatly reduce the clock drift and prolong the resynchronization intervals.

References

  1. Leandro Fabricio Auler and Roberto d’Amore. 2007. Adaptive Kalman filter for time synchronization over packet-switched networks: An heuristic approach. In Proceedings of the IEEE COMSWARE Conference. 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  2. Aggelos Bletsas. 2003. Evaluation of Kalman filtering for network time keeping. In Proceedings of the PERCOM Conference. 1452--1460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Lloyd Butler. 1987. Underwater radio communication. In Amateur Radio.Google ScholarGoogle Scholar
  4. A. J. Cox and N. J. Higham. 1999. Accuracy and stability of the null space method for solving the equality constrained least squares problem. BIT Numerical Mathematics 39, 1, 34--50.Google ScholarGoogle ScholarCross RefCross Ref
  5. Jeremy Elson, Lewis Girod, and Deborah Estrin. 2002. Fine-grained network time synchronization using reference broadcasts. SIGOPS Operating Systems Review 36, SI, 147--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jeremy Eric Elson and Deborah Estrin. 2003. Time Synchronization in Wireless Sensor Networks. Ph.D. Dissertation. University of California, Los Angeles.Google ScholarGoogle Scholar
  7. Epson. 2014. Epson MC-146/MC-156 Crystal Unit Data Sheet. Available at http://www.epsondevice.com.Google ScholarGoogle Scholar
  8. Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Efficient network flooding and time synchronization with glossy. In Proceedings of the IPSN Conference. 73--84.Google ScholarGoogle Scholar
  9. R. Fletcher. 1971. A general quadratic programming algorithm. IMA Journal of Applied Mathematics 7, 1, 76--91.Google ScholarGoogle ScholarCross RefCross Ref
  10. Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. 2003. Timing-sync protocol for sensor networks. In Proceedings of the SenSys Conference. 138--149. DOI:http://dx.doi.org/10.1145/958491.958508 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Donald Goldfarb. 1972. Extensions of Newton’s method and simplex methods for solving quadratic programs. In Numerical Methods for Nonlinear Optimization, F. Lootsma (Ed.). Academic Press, London, England, 239--254.Google ScholarGoogle Scholar
  12. D. Goldfarb and A. Idnani. 1983. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 1, 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Benjamin R. Hamilton, Xiaoli Ma, Qi Zhao, and Jun Xu. 2008. ACES: Adaptive clock estimation and synchronization using Kalman filtering. In Proceedings of the MobiCom Conference. 152--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Carl Hartung, Richard Han, Carl Seielstad, and Saxon Holbrook. 2006. FireWxNet: A multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the MobiSys Conference. 28--41. DOI:http://dx.doi.org/10.1145/1134680.1134685 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. S. Lam. 2008. A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In Proceedings of the IEEE Ultrasonics Symposium. 694--704.Google ScholarGoogle ScholarCross RefCross Ref
  16. Mei Leng and Yik-Chung Wu. 2010. On clock synchronization algorithms for wireless sensor networks under unknown delay. IEEE Transactions on Vehicular Technology 59, 1, 182--190.Google ScholarGoogle ScholarCross RefCross Ref
  17. Mei Leng and Yik-Chung Wu. 2011. Distributed clock synchronization for wireless sensor networks using belief propagation. IEEE Transactions on Signal Processing 59, 11, 5404--5414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jun Liu, Zhaohui Wang, Michael Zuba, Zheng Peng, Jun-Hong Cui, and Shengli Zhou. 2014. DA-Sync: A Doppler-assisted time-synchronization scheme for mobile underwater sensor networks. IEEE Transactions on Mobile Computing 13, 3, 582--595. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jun Liu, Zhong Zhou, Zheng Peng, Jun-Hong Cui, Michael Zuba, and Lance Fiondella. 2013. Mobi-Sync: Efficient time synchronization for mobile underwater sensor networks. IEEE Transactions on Parallel and Distributed Systems 24, 2, 406--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Michael A. Lombardi. 2001. An introduction to frequency calibrations. Reprinted from NIST Frequency Measurement and Analysis Systems: Operator’s Manual. NIST, Gaithersburg, MD, 29.Google ScholarGoogle Scholar
  21. Michael Kevin Maggs, Steven G O’Keefe, and David Victor Thiel. 2012. Consensus clock synchronization for wireless sensor networks. IEEE Sensors Journal 12, 6, 2269--2277.Google ScholarGoogle ScholarCross RefCross Ref
  22. Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The flooding time synchronization protocol. In Proceedings of the Sensys Conference. 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Microchip. 2008. Run-Time Calibration of Watch Crystals. Available at http://www.microchip.com.Google ScholarGoogle Scholar
  24. D. L. Mills. 1991. Internet time synchronization: The network time protocol. IEEE Transactions on Communications 39, 10, 1482--1493. DOI:http://dx.doi.org/10.1109/26.103043Google ScholarGoogle ScholarCross RefCross Ref
  25. National Instruments. 2012. NI USB-6008/6009 User Guide and Specifications. Retrieved Marcy 15, 2016, from http://www.ni.com/pdf/manuals/371303n.pdf.Google ScholarGoogle Scholar
  26. Su Ping. 2003. Delay Measurement Time Synchronization for Wireless Sensor Networks. Technical Report IRB-TR-03-013. Intel Research.Google ScholarGoogle Scholar
  27. Joseph Polastre, Jason Hill, and David Culler. 2004. Versatile low power media access for wireless sensor networks. In Proceedings of the SenSys Conference. DOI:http://dx.doi.org/10.1145/1031495.1031508 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Polastre, R. Szewczyk, and D. Culler. 2005. Telos: Enabling ultra-low power wireless research. In Proceedings of the IPSN Conference. 364--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Luca Schenato and Federico Fiorentin. 2011. Average timesynch: A consensus-based protocol for clock synchronization in wireless sensor networks. Automatica 47, 9, 1878--1886. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. T. Schmid, Z. Charbiwala, R. Shea, and M. B. Srivastava. 2009. Temperature compensated time synchronization. IEEE Embeded Systems Letters 1, 2. DOI:http://dx.doi.org/10.1109/LES.2009.2028103 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Roger S. Strout. 1928. The temperature coefficient of quartz crystal oscillators. Physical Review 32, 5, 829. DOI:http://dx.doi.org/10.1103/PhysRev.32.829Google ScholarGoogle ScholarCross RefCross Ref
  32. Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. 2005. Clock synchronization for wireless sensor networks: A survey. Ad Hoc Networks 3, 281--323.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. 2004. An analysis of a large scale habitat monitoring application. In Proceedings of the SenSys Conference. 214--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong. 2005. A macroscope in the redwoods. In Proceedings of the SenSys Conference. 51--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. 2005. Data collection, storage, and retrieval with an underwater sensor network. In Proceedings of the SenSys Conference. 154--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. L. Walls and J.-J. Gagnepain. 1992. Environmental sensitivities of quartz oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 39, 2, 241--249.Google ScholarGoogle ScholarCross RefCross Ref
  37. Yik-Chung Wu, Qasim Chaudhari, and Erchin Serpedin. 2011. Clock synchronization of wireless sensor networks. IEEE Signal Processing Magazine 28, 1, 124--138.Google ScholarGoogle ScholarCross RefCross Ref
  38. Yik-Chung Wu, Long-Fung Cheung, King-Shan Lui, and Philip W. T. Pong. 2012. Efficient communication of sensors monitoring overhead transmission lines. IEEE Transactions on Smart Grid 3, 3, 1130--1136.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zhe Yang, Lin Cai, Yu Liu, and Jianping Pan. 2012. Environment-aware clock skew estimation and synchronization for wireless sensor networks. In Proceedings of the INFOCOM Conference. 1017--1025. DOI:http://dx.doi.org/10.1109/INFCOM.2012.6195457Google ScholarGoogle ScholarCross RefCross Ref
  40. Kasim Sinan Yildirim and Aylin Kantarci. 2014. Time synchronization based on slow-flooding in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 25, 1, 244--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ziguo Zhong, Pengpeng Chen, and Tian He. 2011. On-demand time synchronization with predictable accuracy. In Proceedings of the INFOCOM Conference. 2480--2488. DOI:http://dx.doi.org/10.1109/INFCOM.2011.5935071Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Energy-Efficient Time Synchronization in Wireless Sensor Networks via Temperature-Aware Compensation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Sensor Networks
        ACM Transactions on Sensor Networks  Volume 12, Issue 2
        May 2016
        323 pages
        ISSN:1550-4859
        EISSN:1550-4867
        DOI:10.1145/2925994
        • Editor:
        • Chenyang Lu
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 April 2016
        • Accepted: 1 January 2016
        • Revised: 1 November 2015
        • Received: 1 January 2015
        Published in tosn Volume 12, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader