skip to main content
10.1145/2872362.2872397acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Public Access

A DNA-Based Archival Storage System

Published:25 March 2016Publication History

ABSTRACT

Demand for data storage is growing exponentially, but the capacity of existing storage media is not keeping up. Using DNA to archive data is an attractive possibility because it is extremely dense, with a raw limit of 1 exabyte/mm3 (109 GB/mm3), and long-lasting, with observed half-life of over 500 years. This paper presents an architecture for a DNA-based archival storage system. It is structured as a key-value store, and leverages common biochemical techniques to provide random access. We also propose a new encoding scheme that offers controllable redundancy, trading off reliability for density. We demonstrate feasibility, random access, and robustness of the proposed encoding with wet lab experiments involving 151 kB of synthesized DNA and a 42 kB random-access subset, and simulation experiments of larger sets calibrated to the wet lab experiments. Finally, we highlight trends in biotechnology that indicate the impending practicality of DNA storage for much larger datasets.

References

  1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266 (5187): 1021--1024, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. E. Allentoft, M. Collins, D. Harker, J. Haile, C. L. Oskam, M. L. Hale, P. F. Campos, J. A. Samaniego, M. T. P. Gilbert, E. Willerslev, G. Zhang, R. P. Scofield, R. N. Holdaway, and M. Bunce. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society of London B: Biological Sciences, 279 (1748): 4724--4733, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Bancroft, T. Bowler, B. Bloom, and C. T. Clelland. Long-term storage of information in DNA. Science, 293 (5536): 1763--1765, 2001.Google ScholarGoogle Scholar
  4. R. Carlson. Time for new DNA synthesis and sequencing cost curves. http://www.synthesis.cc/2014/02/time-for-new-cost-curves-2014.html, 2014.Google ScholarGoogle Scholar
  5. Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and G. Seelig. Programmable chemical controllers made from DNA. Nature Nanotechnology, 8 (10): 755--762, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  6. G. M. Church, Y. Gao, and S. Kosuri. Next-generation digital information storage in DNA. Science, 337 (6102): 1628, 2012.Google ScholarGoogle Scholar
  7. C. T. Clelland, V. Risca, and C. Bancroft. Hiding messages in DNA microdots. Nature, 399: 533--534, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  8. ExtremeTech. New optical laser can increase DVD storage up to one petabyte. http://www.extremetech.com/computing/159245-new-optical-laser-can-increase-dvd-storage-up-to-one-petabyte, 2013.Google ScholarGoogle Scholar
  9. D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R.-Y. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z.-Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison, H. O. Smith, and J. C. Venter. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329 (5987): 52--56, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  10. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494: 77--80, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed., 54: 2552--2555, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  12. Q. Guo, K. Strauss, L. Ceze, and H. Malvar. High-density image storage using approximate memory cells. In ASPLOS, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40 (9): 1098--1101, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  14. IDC. Where in the world is storage. http://www.idc.com/downloads/where_is_storage_infographic_243338.pdf, 2013.Google ScholarGoogle Scholar
  15. S. Kosuri and G. M. Church. Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 11: 499--507, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Leier, C. Richter, W. Banzhaf, and H. Rauhe. Cryptography with DNA binary strands. Biosystems, 57 (1): 13--22, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. D. Matteucci and M. H. Caruthers. Synthesis of deoxyoligonucleotides on a polymer support. Journal of the American Chemical Society, 103 (11): 3185--3191, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Miller. Facebook builds exabyte data centers for cold storage. http://www.datacenterknowledge.com/archives/2013/01/18/facebook-builds-new-data-centers-for-cold-storage/, 2013.Google ScholarGoogle Scholar
  19. R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-based molecular architecture with spatially localized components. In International Symposium on Computer Architecture, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E. Barron. Landscape of next-generation sequencing technologies. Anal. Chem., 83: 4327--4341, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand displacement cascades. Science, 475 (7356): 368--372, 2011.Google ScholarGoogle Scholar
  22. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8 (2): 300--304, 1960.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-state memories. In International Symposium on Microarchitecture, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. J. Schwartz, C. Lee, and J. Shendure. Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nature Methods, 9 (9): 913--915, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  25. Sony. Sony develops magnetic tape technology with the world's highest recording density. http://www.sony.net/SonyInfo/News/Press/201404/14-044E/, 2014.Google ScholarGoogle Scholar
  26. K. Takahashi, S. Yaegashi, A. Kameda, and M. Hagiya. Chain reaction systems based on loop dissociation of DNA. In DNA Computing, volume 3892 of Lecture Notes in Computer Science, pages 347--358. Springer Berlin Heidelberg, 2006.Google ScholarGoogle Scholar
  27. B. Talawar. A crossbar interconnection network in DNA. In Workshop on High Performance Computational Biology, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic. A Rewritable, Random-Access DNA-Based Storage System. Nature Scientific Reports, 5 (14318), 2015.Google ScholarGoogle Scholar
  29. J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. Nucleic acid sequence design via efficient ensemble defect optimization. Journal of Computational Chemistry, 32 (3): 439--452, 2011.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A DNA-Based Archival Storage System

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ASPLOS '16: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems
          March 2016
          824 pages
          ISBN:9781450340915
          DOI:10.1145/2872362
          • General Chair:
          • Tom Conte,
          • Program Chair:
          • Yuanyuan Zhou

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 March 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          ASPLOS '16 Paper Acceptance Rate53of232submissions,23%Overall Acceptance Rate535of2,713submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader