skip to main content
10.1145/2836034.2836035acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvahcConference Proceedingsconference-collections
research-article

A visual active learning system for the assessment of patient well-being in prostate cancer research

Published:25 October 2015Publication History

ABSTRACT

The assessment of patient well-being is highly relevant for the early detection of diseases, for assessing the risks of therapies, or for evaluating therapy outcomes. The knowledge to assess a patient's well-being is actually tacit knowledge and thus, can only be used by the physicians themselves. The rationale of this research approach is to use visual interfaces to capture the mental models of experts and make them available more explicitly. We present a visual active learning system that enables physicians to label the well-being state of patient histories suffering prostate cancer. The labeled instances are iteratively learned in an active learning approach. In addition, the system provides models and visual interfaces for a) estimating the number of patients needed for learning, b) suggesting meaningful learning candidates and c) visual feedback on test candidates. We present the results of two evaluation strategies that prove the validity of the applied model. In a representative real-world use case, we learned the feedback of physicians on a data collection of more than 16.000 prostate cancer histories.

References

  1. B. Alsallakh, M. Bögl, T. Gschwandtner, S. Miksch, B. Esmael, A. Arnaout, G. Thonhauser, and P. Zöllner. A visual analytics approach to segmenting and labeling multivariate time series data. In M. Pohl and J. C. Roberts, editors, EuroVis Workshop on Visual Analytics (EuroVA), pages 31--35. Eurographics, Eurographics, 2014.Google ScholarGoogle Scholar
  2. R. Bade, S. Schlechtweg, and S. Miksch. Connecting time-oriented data and information to a coherent interactive visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 105--112, New York, NY, USA, 2004. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck. Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. In Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pages 43--52, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Bernard, T. Ruppert, O. Goroll, T. May, and J. Kohlhammer. Visual-interactive preprocessing of time series data. In A. Kerren and S. Seipel, editors, SIGRAD, volume 81 of Linköping Electronic Conference Proceedings, pages 39--48. Linköping University Electronic Press, 2012.Google ScholarGoogle Scholar
  5. J. Bernard, D. Sessler, T. May, T. Schlomm, D. Pehrke, and J. Kohlhammer. A visual-interactive system for prostate cancer cohort analysis. Computer Graphics and Applications, IEEE, 35(3): 44--55, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Bernard, N. Wilhelm, B. Krüger, T. May, T. Schreck, and J. Kohlhammer. MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation. IEEE Transactions on Visualization and Computer Graphics, 19(12): 2257--2266, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Bernard, N. Wilhelm, M. Scherer, T. May, and T. Schreck. Timeseriespaths: Projection-based explorative analysis of multivariate time series data. Journal of WSCG, 20(2): 97--106, 2012.Google ScholarGoogle Scholar
  8. E. Eaton, G. Holness, and D. McFarlane. Interactive learning using manifold geometry. In AAAI Fall Symposium: Manifold Learning and Its Applications, volume FS-09-04. AAAI, 2009.Google ScholarGoogle Scholar
  9. J. Fogarty, D. Tan, A. Kapoor, and S. Winder. Cueflik: Interactive concept learning in image search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 29--38, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Fu, X. Zhu, and B. Li. A survey on instance selection for active learning. Knowledge and Information Systems, 35(2): 249--283, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Gschwandtner, J. Gärtner, W. Aigner, and S. Miksch. A taxonomy of dirty time-oriented data. In G. Quirchmayr, J. Basl, I. You, L. Xu, and E. Weippl, editors, CD-ARES, volume 7465 of Lecture Notes in Computer Science, pages 58--72. Springer, 2012.Google ScholarGoogle Scholar
  12. T. Gschwandtner, H. Schuman, J. Bernard, T. May, M. Bögl, S. Miksch, J. Kohlhammer, M. Röhlig, and B. Alsallakh. Enhancing time series segmentation and labeling through the knowledge generation model. In R. Maciejewski and F. Marton, editors, Poster Proceedings of the Eurographics Conference on Visualization (EuroVis 2015), page 3. The Eurographics Association, 2015.Google ScholarGoogle Scholar
  13. Z. Guo, M. Ward, and E. Rundensteiner. Model space visualization for multivariate linear trend discovery. In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on, pages 75--82, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1): 10--18, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual classifier training for text document retrieval. Visualization and Computer Graphics, IEEE Transactions on, 18(12): 2839--2848, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Höferlin, R. Netzel, M. Höferlin, D. Weiskopf, and G. Heidemann. Inter-active learning of ad-hoc classifiers for video visual analytics. In IEEE Conference on Visual Analytics Science and Technology (VAST), 2012, pages 23--32, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD '03, pages 2--11, New York, NY, USA, 2003. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Mühlbacher and H. Piringer. A partition-based framework for building and validating regression models. Visualization and Computer Graphics, IEEE Transactions on, 19(12): 1962--1971, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Piringer, W. Berger, and J. Krasser. HyperMoVal: Interactive Visual Validation of Regression Models for Real-Time Simulation. Computer Graphics Forum, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Seifert and M. Granitzer. User-based active learning. In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pages 418--425, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Turkay, F. Jeanquartier, A. Holzinger, and H. Hauser. On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. In A. Holzinger and I. Jurisica, editors, Interactive Knowledge Discovery and Data Mining in Biomedical Informatics, volume 8401 of Lecture Notes in Computer Science, pages 117--140. Springer Berlin Heidelberg, 2014.Google ScholarGoogle Scholar
  22. T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman, G. Marchand, V. Mukherjee, and M. Smith. Temporal summaries: Supporting temporal categorical searching, aggregation and comparison. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1049--1056, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. Wilhelm, A. Vögele, R. Zsoldos, T. Licka, B. Krüger, and J. Bernard. Furyexplorer: visual-interactive exploration of horse motion capture data. In Proceedings of SPIE, Visualization and Data Analysis (VDA), pages 93970F--93970F--15, 2015.Google ScholarGoogle Scholar
  24. K. Wongsuphasawat and D. Gotz. Outflow: Visualizing patient flow by symptoms and outcome. In IEEE VisWeek Workshop on Visual Analytics in Healthcare, Providence, Rhode Island, USA, 2011.Google ScholarGoogle Scholar
  25. K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang, M. Taieb-Maimon, and B. Shneiderman. Lifeflow: Visualizing an overview of event sequences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11, pages 1747--1756, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A visual active learning system for the assessment of patient well-being in prostate cancer research

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          VAHC '15: Proceedings of the 2015 Workshop on Visual Analytics in Healthcare
          October 2015
          50 pages
          ISBN:9781450336710
          DOI:10.1145/2836034

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 October 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          VAHC '15 Paper Acceptance Rate6of9submissions,67%Overall Acceptance Rate6of9submissions,67%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader