skip to main content
research-article

3D Mesh Labeling via Deep Convolutional Neural Networks

Authors Info & Claims
Published:29 December 2015Publication History
Skip Abstract Section

Abstract

This article presents a novel approach for 3D mesh labeling by using deep Convolutional Neural Networks (CNNs). Many previous methods on 3D mesh labeling achieve impressive performances by using predefined geometric features. However, the generalization abilities of such low-level features, which are heuristically designed to process specific meshes, are often insufficient to handle all types of meshes. To address this problem, we propose to learn a robust mesh representation that can adapt to various 3D meshes by using CNNs. In our approach, CNNs are first trained in a supervised manner by using a large pool of classical geometric features. In the training process, these low-level features are nonlinearly combined and hierarchically compressed to generate a compact and effective representation for each triangle on the mesh. Based on the trained CNNs and the mesh representations, a label vector is initialized for each triangle to indicate its probabilities of belonging to various object parts. Eventually, a graph-based mesh-labeling algorithm is adopted to optimize the labels of triangles by considering the label consistencies. Experimental results on several public benchmarks show that the proposed approach is robust for various 3D meshes, and outperforms state-of-the-art approaches as well as classic learning algorithms in recognizing mesh labels.

Skip Supplemental Material Section

Supplemental Material

References

  1. O. K.-C. Au, Y. Zheng, M. Chen, P. Xu, and C.-L. Tai. 2012. Mesh segmentation with concavity-aware fields. IEEE TVCG 18, 7, 1125--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. M. Baker, L. Deng, J. Glass, S. Khudanpur, C.-H. Lee, N. Morgan, and D. O. Shaughnessy. 2009. Developments and directions in speech recognition and understanding, part 1. IEEE Signal Processing Magazine 26, 3, 75--80.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Belongie, J. Malik, and J. Puzicha. 2002. Shape matching and object recognition using shape contexts. IEEE TPAMI 24, 4, 509--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Ben-Chen and C. Gotsman. 2008. Characterizing shape using conformal factors. In Proc. Eurographics 3DOR. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Bengio. 2009. Learning deep architectures for AI. Foundations and Trends® in Machine Learning 2, 1, 1--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI 23, 11, 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. 2014. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.Google ScholarGoogle Scholar
  8. C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A library for support vector machines. ACM TIST 2, 27:1--27:27. Software available at www.csie.ntu.edu.tw∼cjlin/libsvm. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Chen, A. Golovinskiy, and T. Funkhouser. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3, 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. X. Chen, Y. Guo, B. Zhou, and Q. Zhao. 2013. Deformable model for estimating clothed and naked human shapes from a single image. The Visual Computer 29, 11, 1187--1196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. X. Chen, J. Li, Q. Li, B. Gao, D. Zou, and Q. Zhao. 2015a. Image2scene: Transforming style of 3D room. In Proceedings of ACM MM. 321--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Chen, B. Zhou, F. Lu, L. Wang, L. Bi, and P. Tan. 2015b. Garment modeling with a depth camera. ACM Trans. Graph. 34, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. Deng. 2004. Switching dynamic system models for speech articulation and acoustics. In Proceedings of the IMA Workshop. Springer, 115--134.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Farabet, C. Couprie, L. Najman, and Y. Lecun. 2013. Learning hierarchical features for scene labeling. IEEE TPAMI 35, 8, 1915--1929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Gal and D. Cohen-Or. 2006. Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25, 1, 130--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH. 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Hinton. 2010. A practical guide to training restricted Boltzmann machines. Momentum 9, 1, 926.Google ScholarGoogle Scholar
  18. R. Hu, L. Fan, and L. Liu. 2012. Co-segmentation of 3D shapes via subspace clustering. CGF 31, 5, 1703--1713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Q. Huang, V. Koltun, and L. Guibas. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 6, 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Q.-X. Huang, H. Su, and L. Guibas. 2013. Fine-grained semisupervised labeling of large shape collections. ACM Trans. Graph. 32, 6, 190:1--190:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Q.-X. Huang, M. Wicke, B. Adams, and L. Guibas. 2009. Shape decomposition using modal analysis. CGF 28, 2, 407--416.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. E. Johnson and M. Hebert. 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE TPAMI 21, 5, 433--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. E. Kalogerakis, A. Hertzmann, and K. Singh. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29, 4, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Katz and A. Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Lecun. 2009. Learning invariant features through topographic filter maps. In Proc. CVPR. 1605--1612.Google ScholarGoogle Scholar
  26. K. Kavukcuoglu, M. Ranzato, and Y. Lecun. 2010. Fast inference in sparse coding algorithms with applications to object recognition. arXiv preprint arXiv:1010.3467.Google ScholarGoogle Scholar
  27. V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. Diverdi, and T. Funkhouser. 2013. Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. 32, 4, 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Proc. NIPS. 1106--1114.Google ScholarGoogle Scholar
  29. J. D. Lafferty, A. McCallum, and F. C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML. 282--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML. 609--616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or. 2009. A part-aware surface metric for shape analysis. CGF 28, 2, 397--406.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Lv, X. Chen, J. Huang, and H. Bao. 2012. Semi-supervised mesh segmentation and labeling. CGF 31, 7, 2241--2248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Lyu and E. P. Simoncelli. 2008. Nonlinear image representation using divisive normalization. In Proc. CVPR. 1--8.Google ScholarGoogle Scholar
  34. L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang. 2010. Contextual part analogies in 3D objects. IJCV 89, 2--3, 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. O. Sidi, O. Van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Socher, B. Huval, B. P. Bath, C. D. Manning, and A. Y. Ng. 2012. Convolutional-recursive deep learning for 3D object classification. In Proc. NIPS. 665--673.Google ScholarGoogle Scholar
  37. A. Torralba, K. P. Murphy, and W. T. Freeman. 2007. Sharing visual features for multiclass and multiview object detection. IEEE TPAMI 29, 5, 854--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. O. van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-Or, L. Wolf, and G. Hamarneh. 2011. Prior knowledge for part correspondence. CGF 30, 2, 553--562.Google ScholarGoogle ScholarCross RefCross Ref
  39. O. van Kaick, K. Xu, H. Zhang, Y. Wang, S. Sun, A. Shamir, and D. Cohen-Or. 2013. Co-hierarchical analysis of shape structures. ACM Trans. Graph. 32, 4, 69:1--69:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or, and B. Chen. 2012. Active co-analysis of a set of shapes. ACM Trans. Graph. 31, 6, 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Y. Wang, M. Gong, T. Wang, D. Cohen-Or, H. Zhang, and B. Chen. 2013. Projective analysis for 3D shape segmentation. ACM Trans. Graph. 32, 6, 192:1--192:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Z. Xie, K. Xu, L. Liu, and Y. Xiong. 2014. 3D shape segmentation and labeling via extreme learning machine. CGF 33, 5, 85--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo. 2013. Boundary-aware multidomain subspace deformation. IEEE TVCG 19, 10, 1633.Google ScholarGoogle Scholar
  44. Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. D. Zeiler, G. W. Taylor, and R. Fergus. 2011. Adaptive deconvolutional networks for mid and high level feature learning. In Proc. ICCV. 2018--2025. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. J. Zhang, J. Zheng, C. Wu, and J. Cai. 2012. Variational mesh decomposition. ACM Trans. Graph. 31, 3, 21:1--21:14. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 3D Mesh Labeling via Deep Convolutional Neural Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 1
        December 2015
        150 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2870647
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 December 2015
        • Accepted: 1 October 2015
        • Revised: 1 August 2015
        • Received: 1 March 2015
        Published in tog Volume 35, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader