skip to main content
research-article
Open Access

Image-space modal bases for plausible manipulation of objects in video

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

We present algorithms for extracting an image-space representation of object structure from video and using it to synthesize physically plausible animations of objects responding to new, previously unseen forces. Our representation of structure is derived from an image-space analysis of modal object deformation: projections of an object's resonant modes are recovered from the temporal spectra of optical flow in a video, and used as a basis for the image-space simulation of object dynamics. We describe how to extract this basis from video, and show that it can be used to create physically-plausible animations of objects without any knowledge of scene geometry or material properties.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bathe, K.-J. 2006. Finite element procedures. Klaus-Jurgen Bathe.Google ScholarGoogle Scholar
  2. Brincker, R., Ventura, C., and Andersen, P. 2003. Why output-only modal testing is a desirable tool for a wide range of practical applications. In Proc. Of the International Modal Analysis Conference (IMAC) XXI, paper, vol. 265.Google ScholarGoogle Scholar
  3. Chen, J. G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and Buyukozturk, O. 2015. Modal identification of simple structures with high-speed video using motion magnification. Journal of Sound and Vibration 345, 58--71.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chuang, Y.-Y., Goldman, D. B., Zheng, K. C., Curless, B., Salesin, D. H., and Szeliski, R. 2005. Animating pictures with stochastic motion textures. ACM Trans. Graph. 24, 3 (July), 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G., Durand, F., and Freeman, W. T. 2014. The visual microphone: Passive recovery of sound from video. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4, 79:1--79:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Davis, A., Bouman, K. L., Chen, J. G., Rubinstein, M., Durand, F., and Freeman, W. T. 2015. Visual vibrometry: Estimating material properties from small motion in video. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June).Google ScholarGoogle Scholar
  7. De Roeck, G., Peeters, B., and Ren, W.-X. 2000. Benchmark study on system identification through ambient vibration measurements. In Proceedings of IMAC-XVIII, the 18th International Modal Analysis Conference, San Antonio, Texas, 1106--1112.Google ScholarGoogle Scholar
  8. Doretto, G., Chiuso, A., Wu, Y., and Soatto, S. 2003. Dynamic textures. International Journal of Computer Vision 51, 2, 91--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Helfrick, M. N., Niezrecki, C., Avitabile, P., and Schmidt, T. 2011. 3d digital image correlation methods for full-field vibration measurement. Mechanical Systems and Signal Processing 25, 3, 917--927.Google ScholarGoogle ScholarCross RefCross Ref
  10. Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. Visualization and Computer Graphics, IEEE Transactions on 17, 7, 983--992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. James, D. L., and Pai, D. K. 2002. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. ACM Transactions on Graphics (TOG) 21, 3, 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. James, D. L., and Pai, D. K. 2003. Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects. ACM Transactions on Graphics (TOG) 22, 1, 47--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics 33, 4, Art--No. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '01, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Pentland, A., and Sclaroff, S. 1991. Closed-form solutions for physically based shape modeling and recognition. 715--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pentland, A., and Williams, J. 1989. Good vibrations: Modal dynamics for graphics and animation, vol. 23. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Shabana, A. A. 1991. Theory of vibration, vol. 2. Springer.Google ScholarGoogle Scholar
  19. Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. 1992. Shiftable multi-scale transforms. IEEE Trans. Info. Theory 2, 38, 587--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Stam, J., 1996. Stochastic dynamics: Simulating the effects of turbulence on flexible structures.Google ScholarGoogle Scholar
  21. Sun, M., Jepson, A. D., and Fiume, E. 2003. Video input driven animation (vida). In Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, IEEE Computer Society, Washington, DC, USA, ICCV '03, 96--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Szummer, M., and Picard, R. W. 1996. Temporal texture modeling. In IEEE Intl. Conf. Image Processing, vol. 3, 823--826.Google ScholarGoogle Scholar
  23. Tao, H., and Huang, T. S. 1998. Connected vibrations: A modal analysis approach for non-rigid motion tracking. In CVPR, IEEE Computer Society, 735--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. 2013. Phase-based video motion processing. ACM Trans. Graph. (Proceedings SIGGRAPH 2013) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. 2014. Riesz pyramid for fast phase-based video magnification. In Computational Photography (ICCP), 2014 IEEE International Conference on, IEEE.Google ScholarGoogle Scholar

Index Terms

  1. Image-space modal bases for plausible manipulation of objects in video

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 6
        November 2015
        944 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2816795
        Issue’s Table of Contents

        Copyright © 2015 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 November 2015
        Published in tog Volume 34, Issue 6

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader