skip to main content
10.1145/2814895.2814898acmotherconferencesArticle/Chapter ViewAbstractPublication PagesamConference Proceedingsconference-collections
research-article

A confirmatory approach of the Luminance-Texture-Mass model for musical timbre semantics

Authors Info & Claims
Published:07 October 2015Publication History

ABSTRACT

This study presents a listening experiment designed to further examine the previously proposed luminance-texture-mass (LTM) model for timbral semantics. Thirty two musically trained listeners rated twenty four instrument tones on six predefined semantic scales, namely, brilliance, depth, roundness, warmth, fullness and richness. The selection of this limited set of descriptors was based on previous exploratory work. These six semantic scales were analysed through Principal Component Analysis (PCA) and Multidimensional Scaling (MDS) to produce two different timbre spaces. These timbre spaces were subsequently compared for configurational and dimensional similarity with the LTM semantic space and the direct MDS perceptual space obtained with the same stimuli. The results showed that the selected six semantic scales are adequately representing the LTM model and are fair at predicting the configurations of the sounds that result from pairwise dissimilarity ratings.

References

  1. H. Abdi. The RV coefficient and the congruence coefficient. In N. Salkind, editor, Encyclopedia of Measurement and Statistics. SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks, California, 91320, United States, 2007.Google ScholarGoogle Scholar
  2. V. Alluri and P. Toiviainen. Exploring perceptual and acoustical correlates of polyphonic timbre. Music Perception, 27(3):223--242, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Caclin, S. McAdams, B. K. Smith, and S. Winsberg. Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. Journal of the Acoustical Society of America, 118(1):471--482, July 2005.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. D. Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results, pages 31--44. Cambridge University Press, Cambridge: New York, 1st edition, 2010.Google ScholarGoogle Scholar
  5. J. C. Gower. A general coefficient of similarity and some of it's properties. Biometrics, 27(4):857--871, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33--51, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. C. Gower and G. B. Dijksterhuis. Procrustes Problems, pages 1--248. Oxford University Press, Oxford; New York, 2004.Google ScholarGoogle Scholar
  8. J. M. Grey. Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America, 61:1270--1277, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. M. Hajda. Analysis, Synthesis, and Perception of Musical Sounds, chapter The Effect of Dynamic Acoustical Features on Musical Timbre, pages 250--271. Springer, New York, USA, 2007.Google ScholarGoogle Scholar
  10. P. Iverson and C. L. Krumhansl. Isolating the dynamic attributes of musical timbre. Journal of the Acoustical Society of America, 94(5):2595--2603, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Josse and S. Holmes. Measures of dependence between random vectors and tests of independence. Literature review. arXiv:1307.7383.{stat}, 2013.Google ScholarGoogle Scholar
  12. R. A. Kendall and E. C. Carterette. Verbal attributes of simultaneous wind instrument timbres: I. von Bismarck's adjectives. Music Percept., 10(4):445--468, 1993a.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. A. Kendall and E. C. Carterette. Verbal attributes of simultaneous wind instrument timbres: II. Adjectives induced from Piston's Orchestration. Music Percept., 10(4):469--502, 1993b.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. A. Kendall, E. C. Carterette, and J. M. Hajda. Perceptual and acoustical features of natural and synthetic orchestral instrument tones. Music Percept., 16:327--364, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. Lokki, J. Pätynen, A. Kuusinen, H. Vertanen, and S. Tervo. Concert hall acoustics assessment with individually elicited attributes. Journal of the Acoustical Society of America, 130(2):835--849, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. D. Mayer, J. Lorent, and G. W. Horgan. Exploratory analysis of multiple omics datasets using the adjusted RV coefficient. Statistical Applications in Genetics and Molecular Biology, 10(1):1--27, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. R. Miller and E. C. Carterette. Perceptual space for musical structures. Journal of the Acoustical Society of America, 58(3):711--720, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Oksanen. Multivariate analysis of ecological communities in R: vegan tutorial, 2013. University Oulu, Finland.Google ScholarGoogle Scholar
  19. F. Opolko and J. Wapnick. McGill University Master Samples collection on DVD. McGill University, Montréal, Québec, Canada, 2006.Google ScholarGoogle Scholar
  20. P. R. Peres-Neto and D. A. Jackson. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129(2):169--178, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Plomp. Frequency Analysis and Periodicity Detection in Hearing, chapter Timbre as a multidimensional attribute of complex tones, pages 397--414. Sijthoff, Leiden, 1970.Google ScholarGoogle Scholar
  22. R. Plomp. Aspects of Tone Sensation: A Psychophysical Study, chapter Timbre of complex tones, pages 85--110. Academic Press, London, 1976.Google ScholarGoogle Scholar
  23. A. K. Smilde, H. a. L. Kiers, S. Bijlsma, C. M. Rubingh, and M. J. van Erk. Matrix correlations for high-dimensional data: the modified RV-coefficient. Bioinformatics (Oxford, England), 25(3):401--405, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. von Bismarck. Timbre of steady tones: A factorial investigation of its verbal attributes. Acustica, 30:146--159, 1974.Google ScholarGoogle Scholar
  25. H. L. F. von Helmholtz. On the Sensations of Tone as a Physiological Basis for the Theory of Music. New York: Dover (1954), 4 edition, 1877. English translation by A. J. Ellis.Google ScholarGoogle Scholar
  26. A. Zacharakis, K. Pastiadis, and J. D. Reiss. An interlanguage study of musical timbre semantic dimensions and their acoustic correlates. Music Perception, 31(4):339--358, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Zacharakis, K. Pastiadis, and J. D. Reiss. An interlanguage unification of musical timbre: bridging semantic, perceptual and acoustic dimensions. Music Perception, 32(4):394--412, 2015.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A confirmatory approach of the Luminance-Texture-Mass model for musical timbre semantics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          AM '15: Proceedings of the Audio Mostly 2015 on Interaction With Sound
          October 2015
          250 pages
          ISBN:9781450338967
          DOI:10.1145/2814895

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 October 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate177of275submissions,64%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader