skip to main content
10.5555/2810002.2810009acmconferencesArticle/Chapter ViewAbstractPublication PagesnparConference Proceedingsconference-collections
research-article

Texture-aware ASCII art synthesis with proportional fonts

Authors Info & Claims
Published:20 June 2015Publication History

ABSTRACT

We present a fast structure-based ASCII art generation method that accepts arbitrary images (real photograph or hand-drawing) as input. Our method supports not only fixed width fonts, but also the visually more pleasant and computationally more challenging proportional fonts, which allows us to represent challenging images with a variety of structures by characters. We take human perception into account and develop a novel feature extraction scheme based on a multi-orientation phase congruency model. Different from most existing contour detection methods, our scheme does not attempt to remove textures as much as possible. Instead, it aims at faithfully capturing visually sensitive features, including both main contours and textural structures, while suppressing visually insensitive features, such as minor texture elements and noise. Together with a deformation-tolerant image similarity metric, we can generate lively and meaningful ASCII art, even when the choices of character shapes and placement are very limited. A dynamic programming based optimization is proposed to simultaneously determine the optimal proportional-font characters for matching and their optimal placement. Experimental results show that our results outperform state-of-the-art methods in term of visual quality.

References

  1. {AMFM11} Arbelaez P., Maire M., Fowlkes C., Malik J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 5 (2011), 898--916. URL: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.161, doi:10.1109/TPAMI.2010.161. 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {BMP02} Belongie S., Malik J., Puzicha J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4 (2002), 509--522. URL: http://doi.ieeecomputersociety.org/10.1109/34.993558, doi:10.1109/34.993558. 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {Dau85} Daugman J. G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Optical Society of America, Journal, A: Optics and Image Science 2, 7 (1985), 1160--1169. doi:10.1364/JOSAA.2.001160. 4Google ScholarGoogle Scholar
  4. {DT05} Dalal N., Triggs B.: Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005), pp. 886--893. URL: http://dx.doi.org/10.1109/CVPR.2005.177, doi:10.1109/CVPR.2005.177. 3, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {DZ13} Dollár P., Zitnick C. L.: Structured forests for fast edge detection. In IEEE International Conference on Computer Vision (2013), pp. 1841--1848. URL: http://dx.doi.org/10.1109/ICCV.2013.231, doi:10.1109/ICCV.2013.231. 2, 3, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {Kov99} Kovesi P.: Image features from phase congruency. VIDERE: Journal of computer vision research 1, 3 (1999), 1--26. doi:10.1.1.4.1641. 3, 4Google ScholarGoogle Scholar
  7. {Krz11} Krzywinski M.: Ascii art proportional spacing, tone/ structure mapping and fixed strings, 2011. URL: http://mkweb.bcgsc.ca/asciiart/. 2Google ScholarGoogle Scholar
  8. {Lee96} Lee T. S.: Image representation using 2d gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18, 10 (1996), 959--971. URL: http://doi.ieeecomputersociety.org/10.1109/34.541406, doi:10.1109/34.541406. 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {LL07} Liu Z., Laganière R.: Phase congruence measurement for image similarity assessment. Pattern Recognition Letters 28, 1 (2007), 166--172. URL: http://dx.doi.org/10.1016/j.patrec.2006.06.019, doi:10.1016/j.patrec.2006.06.019. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {MB88} Morrone M. C., Burr D. C.: Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London. (1988), 221--245. doi:10.1098/rspb.1988.0073. 2, 3, 4Google ScholarGoogle Scholar
  11. {MJN11} Miyake K., Johan H., Nishita T.: An interactive system for structure-based ascii art creation. In Proc. of NICOGRAPH International 2011 (June 2011). 2Google ScholarGoogle Scholar
  12. {PW08} Pele O., Werman M.: A linear time histogram metric for improved SIFT matching. In Proc. Computer Vision - ECCV. 2008, pp. 495--508. URL: http://dx.doi.org/10.1007/978-3-540-88690-7_37, doi:10.1007/978-3-540-88690-7_37. 6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {RB12} Ren X., Bo L.: Discriminatively trained sparse code gradients for contour detection. In 26th Annual Conference on Neural Information Processing Systems. (2012), pp. 593--601. 3Google ScholarGoogle Scholar
  14. {SWG* 09} Sampat M. P., Wang Z., Gupta S., Bovik A. C., Markey M. K.: Complex wavelet structural similarity: A new image similarity index. IEEE Transactions on Image Processing 18, 11 (2009), 2385--2401. URL: http://dx.doi.org/10.1109/TIP.2009.2025923, doi:10.1109/TIP.2009.2025923. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {WL11} Wang Z., Li Q.: Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing 20, 5 (2011), 1185--1198. URL: http://dx.doi.org/10.1109/TIP.2010.2092435, doi:10.1109/TIP.2010.2092435. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {XZW10} Xu X., Zhang L., Wong T.: Structure-based ASCII art. ACM Trans. Graph. 29, 4 (2010). URL: http://doi.acm.org/10.1145/1833351.1778789, doi:10.1145/1833351.1778789. 2, 3, 5, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {ZSXJ14} Zhang Q., Shen X., Xu L., Jia J.: Rolling guidance filter. In Proc. of Computer Vision - ECCV (2014), pp. 815--830. URL: http://dx.doi.org/10.1007/978-3-319-10578-9_53, doi:10.1007/978-3-319-10578-9_53. 2Google ScholarGoogle ScholarCross RefCross Ref
  18. {ZZMZ11} Zhang L., Zhang L., Mou X., Zhang D.: FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing 20, 8 (2011), 2378--2386. URL: http://dx.doi.org/10.1109/TIP.2011.2109730, doi:10.1109/TIP.2011.2109730. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Texture-aware ASCII art synthesis with proportional fonts

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      NPAR '15: Proceedings of the workshop on Non-Photorealistic Animation and Rendering
      June 2015
      66 pages

      Publisher

      Eurographics Association

      Goslar, Germany

      Publication History

      • Published: 20 June 2015

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader