skip to main content
10.1145/2807442.2807443acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation

Published:05 November 2015Publication History

ABSTRACT

We present impacto, a device designed to render the haptic sensation of hitting or being hit in virtual reality. The key idea that allows the small and light impacto device to simulate a strong hit is that it decomposes the stimulus: it renders the tactile aspect of being hit by tapping the skin using a solenoid; it adds impact to the hit by thrusting the user's arm backwards using electrical muscle stimulation. The device is self-contained, wireless, and small enough for wearable use, thus leaves the user unencumbered and able to walk around freely in a virtual environment. The device is of generic shape, allowing it to also be worn on legs, so as to enhance the experience of kicking, or merged into props, such as a baseball bat. We demonstrate how to assemble multiple impacto units into a simple haptic suit. Participants of our study rated impact simulated using impacto's combination of solenoid hit and electrical muscle stimulation as more realistic than either technique in isolation.

Skip Supplemental Material Section

Supplemental Material

p11.mp4

mp4

89.1 MB

References

  1. Axivity Serial Library, http://axivity.com/downloads/4 , last accessed on 13/03/2015.Google ScholarGoogle Scholar
  2. Bark, K., Wheeler, J.W., Premakumar, S., and Cutkosky, M.R. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. Proc. HAPTICS'08, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brewster, S. and Brown, L.M. Tactons: structured tactile messages for non-visual information display. Proc. AUIC'04, 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brewster, S., Chohan, F., and Brown, L. Tactile feedback for mobile interactions. Proc. CHI'07, 159--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Caswell, N.A., Yardley, R.T., Montandon, M.N., and Provancher, W.R. Design of a forearm-mounted directional skin stretch device. Proc. HAPTICS'12, 365--370.Google ScholarGoogle Scholar
  6. Farbiz, F., Yu, Z. H., Manders, C., and Ahmad, W. An electrical muscle stimulation haptic feedback for mixed reality tennis game. Proc. SIGGRAPH'07 (posters). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. GearVR, http://www.samsung.com/global/microsite/gearvr/, last accessed on 11/04/2015.Google ScholarGoogle Scholar
  8. Gruenbaum P., McNeely W., Sowizral H., Overman T., and Knutson B., Implementation of dynamic robotic graphics for a virtual control panel, Proc. Presence'97, 118--126.Google ScholarGoogle Scholar
  9. Hasegawa, S., Toshiaki, I., Hashimoto, N., Salvati, M., Mitake, H., Koike, Y.,and Sato, M. Human-scale haptic interaction with a reactive virtual human in a real-time physics simulator. In Computers in Entertainment 4(3), 2006, Article 6C. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Henderson, S. and Feiner, S. Opportunistic controls: leveraging natural affordances as tangible user interfaces for augmented reality. Proc. VRST'08, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hollerbach J. and Jacobsen S. Haptic Interfaces for Teleoperation and Virtual Environments. Proc. Workshop on Simulation and Interaction in Virtual Environments'95, 13--15.Google ScholarGoogle Scholar
  12. Hoshi, T., Takashami, M., Iwamoto, T., and Shinoda, H. Noncontact tactile display based on radiation pressure of Airborne Ultrasound. In IEEE Trans. Haptics. 3, 2010, 155--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jeong, S., Hashimoto, N., and Makoto, S. A novel interaction system with force feedback between real - and virtual human: an entertainment system: "virtual catch ball". Proc. ACE'04, 61--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kramer, J., Force feedback and Texture Simulating Interface device, U.S. Patent 5,184,319.Google ScholarGoogle Scholar
  15. Kron, A., and Schmidt, G. Multi-fingered Tactile Feedback from Virtual and Remote Environments. Proc. HAPTICS'03, 16--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kuroki, S., Kajimoto, H., Nii, H., Kawakami, N., Tachi, S., Proposal for tactile sense presentation that combines electrical and mechanical stimulus, Proc. World Haptics'07. 121,126.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, K.A., Baudisch, P., Griswold, W.G., and Hollan, J.D. Tapping and Rubbing: Exploring New Dimensions of Tactile Feedback with Voice Coil Motors. Proc. UIST'08, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lindeman, W., Yanagida, Y., Noma, H., and Hosaka, K. Wearable vibrotactile systems for virtual contact and information display. In Virtual Reality 9(2), 2006, 203--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lopes, P., and Baudisch, P. Muscle-propelled force feedback: bringing force feedback to mobile devices. Proc. CHI'13, 2577--2580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Murayama, J., Bougrila, L., Luo, Y., Akahane, K., Hasegawa, S., Hirsbrunner, B., Sato, M. SPIDAR G&G: a two-handed haptic interface for bimanual VR interaction. Proc. EuroHaptics'04, 138--146.Google ScholarGoogle Scholar
  21. Norman, G., Likert scales, levels of measurement and the "laws" of statistics, In Advances in Health Sciences Education, 2010, Volume 15, Issue 5, 625--632.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ramsamy, P., Haffegee, A., Jamieson, R., and Alexandrov, V. Using haptics to improve immersion in virtual environments. Proc. ICCS'06, 603--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rank, M., Shi, Z., Müller, H. & Hirche, S. (2010) Perception of Delay in Haptic Telepresence Systems, Presence,19(5), 389--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rekimoto, J., Traxion: a tactile interaction device with virtual force sensation. Proc. UIST'13, 427--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sodhi,R., Poupyrev, I., Glisson, M., and Israr, A., AIREAL: interactive tactile experiences in free air. In ACM Trans. Graph. 32, 4, 2013, Article 134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sutherland, I. A head-mounted three dimensional display. Proc. AFIPS'68, 757--764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tsetserukou, D., Sato, K., and Tachi, S. ExoInterfaces: novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. Proc. AH'10, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wen Qi, W., Taylor, R., Healey, C., and Martens, J. A comparison of immersive HMD, fish tank VR and fish tank with haptics displays for volume visualization. Proc. APGV'06, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yokokohji, Y., Sugawara, Y., Kinoshita, J., and Yoshikawa T. Mechano-Media that Transmit Kinesthetic Knowledge from a Human to Other Humans. Proc. Robotics Research'01, 499--512 .Google ScholarGoogle Scholar
  30. Foley, J. Interfaces for advanced computing. Sci. Am. 257, 4 (October 1987), 126--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Teck, F., Ling, C., Farbiz, F., and Zhiyong, H. Ungrounded haptic rendering device for torque simulation in virtual tennis. Proc. SIGGRAPH Emerging Technologies'12, Article 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Trzesniewski, J. Electric Baseball Hitting Game. US Patent No. 3531116A, Awarded Sep 29, 1970.Google ScholarGoogle Scholar

Index Terms

  1. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UIST '15: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
        November 2015
        686 pages
        ISBN:9781450337793
        DOI:10.1145/2807442

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 November 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UIST '15 Paper Acceptance Rate70of297submissions,24%Overall Acceptance Rate842of3,967submissions,21%

        Upcoming Conference

        UIST '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader