skip to main content
10.1145/2806416.2806548acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

A Min-Max Optimization Framework For Online Graph Classification

Authors Info & Claims
Published:17 October 2015Publication History

ABSTRACT

Traditional online learning for graph node classification adapts graph regularization into ridge regression, which may not be suitable when data is adversarially generated. To solve this issue, we propose a more general min-max optimization framework for online graph node classification. The derived online algorithm can achieve a min-max regret compared with the optimal linear model found offline. However, this algorithm assumes that the label is provided for every node, while label is scare and labeling is usually either too time-consuming or expensive in real-world applications. To save labeling effort, we propose a novel confidence-based query approach to prioritize the informative labels. Our theoretical result shows that an online algorithm learning on these selected labels can achieve comparable mistake bound with the fully-supervised online counterpart. To take full advantage of these labels, we propose an aggressive algorithm, which can update the model even if no error occurs. Theoretical analysis shows that the mistake bound of the proposed method, thanks to the aggressive update trials, is better than conservative competitor in expectation. We finally empirically evaluate it on several real-world graph databases. Encouraging experimental results further demonstrate the effectiveness of our method.

References

  1. J. Abernethy, A. Agarwal, and P. L. Bartlett. A stochastic view of optimal regret through minimax duality. In Proceedings of the 22nd Annual Conference on Learning Theory, 2009.Google ScholarGoogle Scholar
  2. M. S. Bartlett. An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics, pages 107--111, 1951.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7:2399--2434, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Learning noisy linear classifiers via adaptive and selective sampling. Machine learning, 83(1):71--102, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-orde perceptron algorithm. SIAM Journal on Computing, 34(3):640--668, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Cesa-Bianchi, C. Gentile, and F. Orabona. Robust bounds for classification via selective sampling. In ICML-09, pages 121--128, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective sampling for linear classification. The Journal of Machine Learning Research 7:1205--1230, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised learning, volume 2. MIT press Cambridge, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  9. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. JMLR, 7:551--585, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Crammer, M. Dredze, and F. Pereira. Confidence-weighted linear classification for text categorization. JMLR, 13(1):1891--1926, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Desrosiers and G. Karypis. Within-network classification using local structure similarity. In Machine Learning and Knowledge Discovery in Databases, pages 260--275. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211--218, 1936.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Forster. On relative loss bounds in generalized linear regression. In Fundamentals of Computation Theory, pages 269--280, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine learning, 28(2--3):133--168, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3):265--299, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern recognition letters, 24(12):1795--1803, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. B. Goldberg, X. Zhu, A. Furger, and J.-M. Xu. Oasis: Online active semi-supervised learning. In AAAI, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  18. Q. Gu, C. Aggarwal, J. Liu, and J. Han. Selective sampling on graphs for classification. In Proceedings of the 19th ACM SIGKDD, pages 131--139, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Herbster, G. Lever, and M. Pontil. Online prediction on large diameter graphs. In NIPS-09, pages 649--656, 2009.Google ScholarGoogle Scholar
  20. M. Herbster and M. Pontil. Prediction on a graph with a perceptron. In NIPS-06, pages 577--584, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In ICML-05, pages 305--312, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. C. Hoi, J. Wang, and P. Zhao. Libol: A library for online learning algorithms. The Journal of Machine Learning Research, 15(1):495--499, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Ji, J. Han, and M. Danilevsky. Ranking-based classification of heterogeneous information networks. In Proceedings of the 17th ACM SIGKDD, pages 1298--1306, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Kushnir. Active-transductive learning with label-adapte kernels. In Proceedings of the 20th ACM SIGKDD, pages 462--471, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. Orabona and N. Cesa-Bianchi. Better algorithms for selective sampling. In ICML-11, pages 433--440, 2011.Google ScholarGoogle Scholar
  26. F. Orabona and K. Crammer. New adaptive algorithms for online classification. In NIPS-10, pages 1840--1848, 2010.Google ScholarGoogle Scholar
  27. M. Pennacchiotti and A.-M. Popescu. A machine learning approach to twitter user classification. ICWSM, 11:281--288, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. A. Ross, K. Nandakumar, and A. K. Jain. Handbook of multibiometrics, volume 6. Springer Science & Business Media, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Slonim, E. Yom-Tov, and K. Crammer. Active online classification via information maximization. In IJCAI, volume 22, page 1498, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. J. Smola and R. Kondor. Kernels and regularization on graphs. In Learning theory and kernel machines, pages 144--158. Springer, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  31. E. Takimoto and M. K. Warmuth. The last-step minimax algorithm. In Algorithmic Learning Theory, pages 279--290, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. Vovk. Competitive on-line linear regression. NIPS-98, pages 364--370, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Wang, P. Zhao, and S. C. Hoi. Exact soft confidence-weighted learning. In ICML-12, pages 121--128, 2012.Google ScholarGoogle Scholar
  34. Z. Yang, J. Tang, and Y. Zhang. Active learning for streaming networked data. In CIKM-14, pages 1129--1138, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Zhao and S. C. Hoi. Cost-sensitive online active learning with application to malicious url detection. In Proceedings of the 19th ACM SIGKDD, pages 919--927. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. Zhao, S. C. Hoi, and R. Jin. Double updating online learning. The Journal of Machine Learning Research, 12:1587--1615, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 233--240, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Zhao, S. C. H. Hoi, J. Wang, and B. Li. Online transfer learning. Artificial Intelligence, 216:76--102, 2014Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Min-Max Optimization Framework For Online Graph Classification

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CIKM '15: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
        October 2015
        1998 pages
        ISBN:9781450337946
        DOI:10.1145/2806416

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 October 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        CIKM '15 Paper Acceptance Rate165of646submissions,26%Overall Acceptance Rate1,861of8,427submissions,22%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader