skip to main content
article
Free Access

Geometric intuition and algorithms for Ev-SVM

Authors Info & Claims
Published:01 January 2015Publication History
Skip Abstract Section

Abstract

In this work we address the Ev-SVM model proposed by Pérez-Cruz et al. as an extension of the traditional v support vector classification model (v-SVM). Through an enhancement of the range of admissible values for the regularization parameter v, the Ev-SVM has been shown to be able to produce a wider variety of decision functions, giving rise to a better adaptability to the data. However, while a clear and intuitive geometric interpretation can be given for the v-SVM model as a nearest-point problem in reduced convex hulls (RCH-NPP), no previous work has been made in developing such intuition for the Ev-SVM model. In this paper we show how Ev-SVM can be reformulated as a geometrical problem that generalizes RCH-NPP, providing new insights into this model. Under this novel point of view, we propose the RapMinos algorithm, able to solve Ev-SVM more efficiently than the current methods. Furthermore, we show how RapMinos is able to address the Ev-SVM model for any choice of regularization norm lp ≥1 seamlessly, which further extends the SVM model flexibility beyond the usual Ev-SVM models.

References

  1. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, 2(1):183-202, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K.P. Bennett and E.J. Bredensteiner. Duality and geometry in SVM classifiers. In Proceedings of the 17th International Conference on Machine Learning, pages 57-64, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.Google ScholarGoogle Scholar
  4. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Boyd and L. Vandenberghe. Subgradients. Notes for EE364b, Stanford University, Winter 2006-07, January 2007.Google ScholarGoogle Scholar
  6. C.-C. Chang and C.-J. Lin. LIBSVM: a Library for Support Vector Machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. F. H. Clarke. Optimization and Nonsmooth Analysis. Classics in Applied Mathematics. SIAM, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  8. P.L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. arXiv:0912.3522, 2009.Google ScholarGoogle Scholar
  9. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995. Google ScholarGoogle ScholarCross RefCross Ref
  10. D.J. Crisp and C.J.C. Burges. A geometric interpretation of v-SVM classifiers. In Advances in Neural Information Processing Systems, volume 12, 2000.Google ScholarGoogle Scholar
  11. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-Interscience. Wiley & Sons, New York, 2nd edition, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Ericson. The Gilbert-Johnson-Keerthi algorithm. Technical report, Sony Computer Entertainment America, 2005.Google ScholarGoogle Scholar
  13. D.G. De Figueiredo and L.A. Karlovitz. On the radial projection in normed spaces. Bulletin of the American Mathematical Society, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Huang, D. Zheng, I. King, and M.R. Lyu. Arbitrary norm support vector machines. Neural Computation, 21(2):560-582, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Transactions on Neural Networks, 11(1):124-136, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. López, Á. Barbero, and J.R. Dorronsoro. On the equivalence of the SMO and MDM algorithms for SVM training. In Lecture Notes in Computer Science: Machine Learning and Knowledge Discovery in Databases, volume 5211, pages 288-300. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. López, Á. Barbero, and J.R. Dorronsoro. Clipping algorithms for solving the nearest point problem over reduced convex hulls. Pattern Recognition, 44(3):607-614, 2011a. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. López, K. De Brabanter, J.R. Dorronsoro, and JAK Suykens. Sparse LS-SVMs with l0-norm minimization. ESANN, 2011b.Google ScholarGoogle Scholar
  19. D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  20. M.E. Mavroforakis and S. Theodoridis. A geometric approach to support vector machine (SVM) classification. IEEE Transactions on Neural Networks, 17(3):671-682, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M.E. Mavroforakis, M. Sdralis, and S. Theodoridis. A geometric nearest point algorithm for the efficient solution of the SVM classification task. IEEE Transactions on Neural Networks, 18(5):1545-1549, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Pérez-Cruz, J. Weston, D.J.L. Hermann, and B. Schölkopf. Extension of the v-SVM range for classification. In Advances in Learning Theory: Methods, Models and Applications, volume 190, pages 179-196, 2003.Google ScholarGoogle Scholar
  23. G. Rätsch. Benchmark Repository, 2000. Datasets available at http://www.raetschlab. org/Members/raetsch/benchmark.Google ScholarGoogle Scholar
  24. R.T. Rockafellar. Convex Analysis, volume 28 of Princeton Mathematics Series. Princeton University Press, 1970.Google ScholarGoogle Scholar
  25. R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7):1443-1472, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  26. B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algorithms. Neural Computation, 12(5):1207-1245, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Shi, Y. Tian, G. Kou, Y. Peng, and J. Li. Feature selection via lp-norm support vector machines. In Optimization Based Data Mining: Theory and Applications, pages 107-116. Springer, 2011.Google ScholarGoogle Scholar
  28. A. Takeda and M. Sugiyama. v-support vector machine as conditional value-at-risk minimization. In Proceedings of the 25th International Conference on Machine Learning, pages 1056-1063, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Takeda and M. Sugiyama. On generalization and non-convex optimization of extended v-support vector machine. New Generation Computing, 27:259-279, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. Takeda, H. Mitsugi, and T. Kanamori. A unified classification model based on robust optimization. Neural Computation, 25 (3):759-804, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In S. Thrun, L.K. Saul, and B. Schölkopf, editors, Neural Information Processing Systems. MIT Press, 2003.Google ScholarGoogle Scholar

Index Terms

  1. Geometric intuition and algorithms for Ev-SVM

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader