skip to main content
10.1145/2783258.2783354acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Open Access

Efficient Algorithms for Public-Private Social Networks

Published:10 August 2015Publication History

ABSTRACT

We introduce the public-private model of graphs. In this model, we have a public graph and each node in the public graph has an associated private graph. The motivation for studying this model stems from social networks, where the nodes are the users, the public graph is visible to everyone, and the private graph at each node is visible only to the user at the node. From each node's viewpoint, the graph is just a union of its private graph and the public graph.

We consider the problem of efficiently computing various properties of the graphs from each node's point of view, with minimal amount of recomputation on the public graph. To illustrate the richness of our model, we explore two powerful computational paradigms for studying large graphs, namely, sketching and sampling, and focus on some key problems in social networks and show efficient algorithms in the public-private graph model. In the sketching model, we show how to efficiently approximate the neighborhood function, which in turn can be used to approximate various notions of centrality. In the sampling model, we focus on all-pair shortest path distances, node similarities, and correlation clustering.

Skip Supplemental Material Section

Supplemental Material

p139.mp4

mp4

126.4 MB

References

  1. K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In SODA, pages 459--467, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and subgraphs. In PODS, pages 5--14, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering. JACM, 55(5), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Andersen, F. Chung, and K. Lang. Local partitioning for directed graphs using pagerank. Internet Mathematics, 5(1--2):3--22, 2008.Google ScholarGoogle Scholar
  5. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1--3):89--113, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks. In KDD, pages 523--528, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Boldi, M. Rosa, and S. Vigna. HyperANF: approximating the neighbourhood function of very large graphs on a budget. In WWW, pages 625--634, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Boldi and S. Vigna. In-core computation of geometric centralities with hyperball: A hundred billion nodes and beyond. In ICDM Workshops, pages 621--628, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX, pages 84--95, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Cohen. Size-estimation framework with applications to transitive closure and reachability. JCSS, 55:441--453, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. Cohen. All-distances sketches, revisited: HIP estimators for massive graphs analysis. In PODS, pages 88--99, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In PODC, pages 225--234, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Dasgupta, R. Kumar, and T. Sarlós. On estimating the average degree. In WWW, pages 795--806, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J. Atallah and M. Blanton, editors, Algorithms and Theory of Computation Handbook, pages 9--9. Chapman & Hall/CRC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. JACM, 51(6):968--992, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Dey, Z. Jelveh, and K. W. Ross. Facebook users have become much more private: A large-scale study. In PerCom Workshops, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. J. Hardiman and L. Katzir. Estimating clustering coefficients and size of social networks via random walk. In WWW, pages 539--550, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. H. Haveliwala. Topic-sensitive pagerank. In WWW, pages 517--526, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. JACM, 48(4):723--760, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages 271--279. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39--43, 1953.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of social networks via biased sampling. In WWW, pages 597--606, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. V. King. Fully dynamic connectivity. In Encyclopedia of Algorithms. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  24. V. King. Fully dynamic transitive closure. In Encyclopedia of Algorithms. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Predicting positive and negative links in online social networks. In WWW, pages 641--650, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Signed networks in social media. In CHI, pages 1361--1370, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. TKDD, 1(1), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9--20, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast and scalable tool for data mining in massive graphs. In KDD, pages 81--90, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Panigrahy, M. Najork, and Y. Xie. How user behavior is related to social affinity. In WSDM, pages 713--722, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Ripeanu, A. Iamnitchi, and I. T. Foster. Mapping the Gnutella network. IEEE Internet Computing, 6(1):50--57, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A sketch-based distance oracle for web-scale graphs. In WSDM, pages 401--410, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, pages 717--726, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth. In ICDM, pages 745--754, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient Algorithms for Public-Private Social Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
        August 2015
        2378 pages
        ISBN:9781450336642
        DOI:10.1145/2783258

        Copyright © 2015 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 August 2015

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader