skip to main content
research-article

LinkEdit: interactive linkage editing using symbolic kinematics

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a method for interactive editing of planar linkages. Given a working linkage as input, the user can make targeted edits to the shape or motion of selected parts while preserving other, e.g., functionally-important aspects. In order to make this process intuitive and efficient, we provide a number of editing tools at different levels of abstraction. For instance, the user can directly change the structure of a linkage by displacing joints, edit the motion of selected points on the linkage, or impose limits on the size of its enclosure. Our method safeguards against degenerate configurations during these edits, thus ensuring the correct functioning of the mechanism at all times. Linkage editing poses strict requirements on performance that standard approaches fail to provide. In order to enable interactive and robust editing, we build on a symbolic kinematics approach that uses closed-form expressions instead of numerical methods to compute the motion of a linkage and its derivatives. We demonstrate our system on a diverse set of examples, illustrating the potential to adapt and personalize the structure and motion of existing linkages. To validate the feasibility of our edited designs, we fabricated two physical prototypes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Autodesk. 2015. Autodesk MeshMixer. Available at http://www.123dapp.com/meshmixer.Google ScholarGoogle Scholar
  2. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. 2011. Pattern-aware shape deformation using sliding dockers. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. 2012. An algebraic model for parameterized shape editing.Google ScholarGoogle Scholar
  7. Burmester, L. 1888. Lehrbuch der Kinematik. Arthur Felix, Leipzig.Google ScholarGoogle Scholar
  8. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. In Proc. of ACM SIGGRAPH Asia '13.Google ScholarGoogle Scholar
  9. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. In Proc. of ACM SIGGRAPH '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dumas, J., Hergel, J., and Lefebvre, S. 2014. Bridging the gap: Automated steady scaffoldings for 3d printing. In Proc. of ACM SIGGRAPH '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Erdman, A. G., Sandor, G. N., and Kota, S. 2001. Mechanism Design: Analysis and Synthesis. Prentice-Hall, Englewood Cliffs, NJ. Vol. 1, No 4.Google ScholarGoogle Scholar
  13. Freudenstein, F. 1954. Design of Four-link Mechanisms. Ph. D. Thesis, Columbia University, USA.Google ScholarGoogle Scholar
  14. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. In Proc. of ACM SIGGRAPH '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kaufman, R. E., and Maurer, W. G. 1971. Interactive linkage synthesis on a small computer. In Proceedings of the 1971 26th Annual Conference, ACM '71, 376--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kecskeméthy, A., Krupp, T., and Hiller, M. 1997. Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody System Dynamics 1, 1, 23--45.Google ScholarGoogle ScholarCross RefCross Ref
  18. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics (Special issue of SIGGRAPH Asia 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Laulusa, A., and Bauchau, O. A. 2008. Review of Classical Approaches for Constraint Enforcement in Multibody Systems. Journal of Computational and Nonlinear Dynamics 3, 1.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3d printed objects. In Proc. of ACM SIGGRAPH '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Megaro, V., Thomaszewski, B., Gauge, D., Grinspun, E., Coros, S., and Gross, M. H. 2014. Chacra: An interactive design system for rapid character crafting. In Proc. of Symp. on Computer Animation '14.Google ScholarGoogle Scholar
  23. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Myszka, D. H., Murray, A. P., and Wampler, C. W. 2013. Computing the branches, singularity trace, and critical points of single degree-of-freedom, closed-loop linkages. Journal of Mechanisms and Robotics 6, 1.Google ScholarGoogle ScholarCross RefCross Ref
  25. Perry, R. N., and Frisken, S. F. 2001. Kizamu: A system for sculpting digital characters. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '01, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. 33, 4 (July), 62:1--62:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. In Proc. of Eurographics '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. In Proc. of ACM SIGGRAPH '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, ACM Press, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. In Proc. of ACM SIGGRAPH '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Uchida, T., and McPhee, J. 2012. Using grbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mechanism and Machine Theory 52, 0, 144--157.Google ScholarGoogle ScholarCross RefCross Ref
  34. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. In Proc. of ACM SIGGRAPH '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. In Proc. of ACM SIGGRAPH '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia '12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. LinkEdit: interactive linkage editing using symbolic kinematics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader