skip to main content
10.1145/2702123.2702551acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Mixed-Initiative Approaches to Global Editing in Slideware

Published:18 April 2015Publication History

ABSTRACT

Good alignment and repetition of objects across presentation slides can facilitate visual processing and contribute to audience understanding. However, creating and maintaining such consistency during slide design is difficult. To solve this problem, we present two complementary tools: (1) StyleSnap, which increases the alignment and repetition of objects by adaptively clustering object edge positions and allowing parallel editing of all objects snapped to the same spatial extent; and (2) FlashFormat, which infers the least-general generalization of editing examples and applies it throughout the selected range. In user studies of repetitive styling task performance, StyleSnap and FlashFormat were 4-5 times and 2-3 times faster respectively than conventional editing. Both use a mixed-initiative approach to improve the consistency of slide decks and generalize to any situations involving direct editing across disjoint visual spaces.

Skip Supplemental Material Section

Supplemental Material

References

  1. Abela, A.V. (2008). Advanced presentations by design. Pfeiffer.Google ScholarGoogle Scholar
  2. Ali, K., Hartmann, K., Fuchs, G. & Schumann, H. (2008). Adaptive layout for interactive documents. SmartGraphics'08, 247--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amershi, S., Fogarty, J. & Weld., D. (2012). Regroup: interactive machine learning for on-demand group creation in social networks. CHI'12, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baudisch, P., Cutrell, E., Hinckley, K. & Eversole, A. (2005). Snap-and-go: helping users align objects without the modality of traditional snapping. CHI'05, 301--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bier, E.A. & Stone, M.C. (1986). Snap-dragging. SIGGRAPH'86, 233--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Blackwell, A.F. (2002). First steps in programming: A rationale for attention investment models. Human Centric Computing Languages and Environments, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Borning, A., Lin, R.K.H & Marriott, K. (2000). Constraintbased document layout for the Web. Multimedia Syst. 8(3), 177--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cypher, A. (1991). EAGER: programming repetitive tasks by example. CHI'91, 33--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Drucker, S.M., Petschnigg, G. & Agrawala, M. (2006). Comparing and managing multiple versions of slide presentations. UIST'06, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Duarte, N. (2008). Slide:ology: The art and science of creating great presentations. O'Reilly Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Edge, D. Savage, J. & Yatani, K. (2013). HyperSlides: dynamic presentation prototyping. CHI'13, 671--680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fails, J.A. & Olsen Jr., D.R. (2003). Interactive machine learning. IUI'03, 39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fernquist, J., Shoemaker, G. & Booth, K. S. (2011). "Oh snap" helping users align digital objects on touch interfaces. INTERACT'11, 338--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Frisch, M., Kleinau, S., Langner, R. & Dachselt, R. (2011). Grids and guides: multi-touch layout and alignment tools. CHI'11, 1615--1618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Frisch, M., Langner, R. & Dachselt, R. (2011). Neat: a set of flexible tools and gestures for layout tasks on interactive displays. ITS'11, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Graf, W.H. (1998). Constraint-based graphical layout of multimodal presentations. Readings in intelligent user interfaces, Morgan Kaufmann, 263--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX: results of empirical and theoretical research. Human mental workload, 1(3), 139--183.Google ScholarGoogle Scholar
  18. Hastie, T., Tibshirani, R. & Friedman, J.J.H. (2001). The elements of statistical learning. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  19. Horvitz, E. (1999). Principles of mixed-initiative user interfaces. CHI'99, 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jacobs, C., Li, W., Schrier, W., Bargeron, D. & Salesin, D. (2003). Adaptive grid-based document layout. SIGGRAPH'03, 838--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jahanian, A., Liu, J., Lin, Q., Tretter, D., O'Brien-Strain, E., Lee, S.C., Lyons, N. & Allebach, J. (2013). Recommendation system for automatic design of magazine covers. IUI'13, 95--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kurlander, D. & Bier, E. (1988). Graphical search and replace. SIGGRAPH'88, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, Y., Edge, D. & Yatani, K. (2013). SidePoint: a peripheral knowledge panel for presentation slide authoring. CHI'13, 681--684 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lok, S. & Feiner, S.K. (2001). A survey of automated layout techniques for information presentations. SmartGraphics'01, 61--68.Google ScholarGoogle Scholar
  25. Lok, S., Feiner, S.K. & Ngai, G. (2004). Evaluation of visual balance for automated layout. IUI'04, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Masui, T. (2001). HyperSnapping. HCC'01, 188--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Miller, R.C. & Myers, B.A. (2002). Multiple selections in smart text editing. IUI'02, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Miller, R.C. & Marshall, A.M. (2004). Cluster-based find and replace. CHI'04, 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Myers, B. A. (1992). Demonstrational interfaces: a step beyond direct manipulation. Computer 25(8), 61--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Open XML SDK 2.5. http://msdn.microsoft.com/enus/library/office/bb448854.aspxGoogle ScholarGoogle Scholar
  31. Pschetz, L., Yatani, K. & Edge, D. (2014). TurningPoint: narrative-driven presentation planning. CHI'14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Raza, M., Gulwani, S. & Milic-Frayling, N. (2014). Programming by example using least general generalizations. AAAI.Google ScholarGoogle Scholar
  33. Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: is beauty in the perceiver's processing experience?. Personality and social psychology review, 8(4), 364--382.Google ScholarGoogle Scholar
  34. Reynolds, G. (2012). Presentation Zen: simple ideas on presentation design and delivery. New Riders. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ritter, A. and Basu, S. (2009). Learning to generalize for complex selection tasks. IUI'09, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Schrier, E., Dontcheva, M., Jacobs, C., Wade, G. & Salesin, D. (2008). Adaptive layout for dynamically aggregated documents. IUI'08, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sibson. R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Journal 16 (1), 30--34.Google ScholarGoogle ScholarCross RefCross Ref
  38. Watanabe, T. & Hanaue, K. (2013). Composition support of presentation slides based on transformation of semantic relationships into layout structure. Multimedia Services in Intelligent Environments, 25, 155--181.Google ScholarGoogle ScholarCross RefCross Ref
  39. Weitzman, L. & Wittenburg, K. (1996). Grammar-based articulation for multimedia document design. Multimedia Systems, 4(3), 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wigdor, D., Benko, H., Pella, J., Lombardo, J. & Williams, S. (2011). Rock & rails: extending multi-touch interactions with shape gestures to enable precise spatial manipulations. CHI'11, 1581--1590 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xu, P., Fu, H., Igarashi, T. & Tai, C-L. (2014). Global beautification of layouts with interactive ambiguity resolution. UIST'14, 243--252. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mixed-Initiative Approaches to Global Editing in Slideware

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader