

skip to main content

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 ACM SIGARCH Computer Architecture News
	Newsletter Home
	Latest Issue
	
	Archive
	Authors
	Affiliations
	Award Winners
	More

 	Home
	SIGs
	SIGARCH
	ACM SIGARCH Computer Architecture News
	Vol. 43, No. 1
	Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement

research-article Open Access

Share on	
	
	
	
	

Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement

 	Authors:
	 Stelios Sidiroglou-Douskos
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Eric Lahtinen
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Nathan Rittenhouse
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Paolo Piselli
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Fan Long
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Deokhwan Kim
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

,
	 Martin Rinard
 MIT CSAIL, Cambridge, MA, USA

 MIT CSAIL, Cambridge, MA, USA
View Profile

Authors Info & Claims

 ACM SIGARCH Computer Architecture NewsVolume 43Issue 1March 2015pp 473–486https://doi.org/10.1145/2786763.2694389

Published:14 March 2015Publication History

	31citation
	1,701
	Downloads

Metrics
Total Citations31
Total Downloads1,701
Last 12 Months79
Last 6 weeks11

	Get Citation AlertsNew Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

New Citation Alert!

Please log in to your account

	
	
	Publisher Site

	
	eReader
	PDF

ACM SIGARCH Computer Architecture News
Volume 43, Issue 1

 PreviousArticleNextArticle

Skip Abstract SectionAbstract

We present a new technique and system, DIODE, for auto- matically generating inputs that trigger overflows at memory allocation sites. DIODE is designed to identify relevant sanity checks that inputs must satisfy to trigger overflows at target memory allocation sites, then generate inputs that satisfy these sanity checks to successfully trigger the overflow. DIODE works with off-the-shelf, production x86 binaries. Our results show that, for our benchmark set of applications, and for every target memory allocation site exercised by our seed inputs (which the applications process correctly with no overflows), either 1) DIODE is able to generate an input that triggers an overflow at that site or 2) there is no input that would trigger an overflow for the observed target expression at that site.

 References

	Common vulnerabilities and exposures. http://cve.mitre.org/.Google Scholar
	Dillo. http://www.dillo.org/.Google Scholar
	Hachoir. http://bitbucket.org/haypo/hachoir/wiki/Home.Google Scholar
	Peach fuzzing platform. http://peachfuzzer.com/.Google Scholar
	SafeInt. http://safeint.codeplex.com/.Google Scholar
	SPIKE fuzzing platform. http://www.immunitysec.com/resources-freesoftware.shtml.Google Scholar
	D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. RICH: Automatically protecting against integer-based vulnerabilities. Department of Electrical and Computing Engineering, page 28, 2007.Google Scholar
	D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-based exploit generation is possible: Techniques and implications. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 143--157. IEEE, 2008. Google ScholarDigital Library
	C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX conference on Operating systems design and implementation, OSDI'08, pages 209--224, Berkeley, CA, USA, 2008. USENIX Association. Google ScholarDigital Library
	C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically generating inputs of death. ACM Transactions on Information and System Security (TISSEC), 12(2):10, 2008. Google ScholarDigital Library
	E. Ceesay, J. Zhou, M. Gertz, K. Levitt, and M. Bishop. Using type qualifiers to analyze untrusted integers and detecting security flaws in C programs. Detection of Intrusions and Malware & Vulnerability Assessment, pages 1--16, 2006. Google ScholarDigital Library
	C. Cowan, H. Hinton, C. Pu, and J. Walpole. The cracker patch choice: An analysis of post hoc security techniques. 2000.Google Scholar
	L. De Moura and N. Bjørner. Z3: an efficient smt solver. In Proceedings of the Theory and practice of software, 14th international conference on Tools and algorithms for the construction and analysis of systems, TACAS'08/ETAPS'08, pages 337--340, Berlin, Heidelberg, 2008. Springer-Verlag. Google ScholarDigital Library
	W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in C/C++. In Proceedings of the 2012 International Conference on Software Engineering, pages 760--770. IEEE Press, 2012. Google ScholarDigital Library
	W. Drewry and T. Ormandy. Flayer: Exposing application internals. In Proceedings of the first USENIX workshop on Offensive Technologies, pages 1--9. USENIX Association, 2007. Google ScholarDigital Library
	V. Ganesh, T. Leek, and M. Rinard. Taint-based directed white-box fuzzing. In ICSE '09: Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society, 2009. Google ScholarDigital Library
	P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation, PLDI '05, pages 213--223, New York, NY, USA, 2005. ACM. Google ScholarDigital Library
	P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing for security testing. Queue, 10(1):20, 2012. Google ScholarDigital Library
	I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for overflows: a guided fuzzer to find buffer boundary violations. In Proceedings of the 22nd USENIX conference on Security, pages 49--64. USENIX Association, 2013. Google ScholarDigital Library
	F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Automatic input rectification. In Proceedings of the 2012 International Conference on Software Engineering, ICSE 2012, pages 80--90, Piscataway, NJ, USA, 2012. IEEE Press. Google ScholarDigital Library
	F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Automatic input rectification. MIT-CSAIL-TR-2011-044.Google Scholar
	F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard. Sound input filter generation for integer overflow errors. 2014.Google ScholarDigital Library
	F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic runtime error repair and containment via recovery shepherding. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, page 26. ACM, 2014. Google ScholarDigital Library
	B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities. Communications of the ACM, 33(12):32--44, 1990. Google ScholarDigital Library
	D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to find integer bugs in x86 binary Linux programs. In Proceedings of the 18th conference on USENIX security symposium, pages 67--82. USENIX Association, 2009. Google ScholarDigital Library
	N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation, PLDI '07. ACM, 2007. Google ScholarDigital Library
	J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patching errors in deployed software. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP '09, pages 87--102, New York, NY, USA, 2009. ACM. Google ScholarDigital Library
	M. Rinard. Acceptability-oriented computing. In Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '03) Companion, Onwards! Session, Anaheim, California, Oct. 2003. Google ScholarDigital Library
	M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S. Beebee. Enhancing server availability and security through failure-oblivious computing. In OSDI, volume 4, pages 21--21, 2004. Google ScholarDigital Library
	J. Röning, M. Lasko, A. Takanen, and R. Kaksonen. PROTOS -- systematic approach to eliminate software vulnerabilities. Invited presentation at Microsoft Research, 2002.Google Scholar
	D. Sarkar, M. Jagannathan, J. Thiagarajan, and R. Venkatapathy. Flow-insensitive static analysis for detecting integer anomalies in programs. In Proceedings of the 25th conference on IASTED International Multi-Conference: Software Engineering, pages 334--340. ACTA Press, 2007. Google ScholarDigital Library
	R. Seacord. The CERT C Secure Coding Standard. Addison-Wesley Professional, 2008. Google ScholarDigital Library
	K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for C, volume 30. ACM, 2005. Google ScholarDigital Library
	M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Impeding malware analysis using conditional code obfuscation. In NDSS, 2008.Google Scholar
	S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis. Assure: automatic software self-healing using rescue points. ACM SIGARCH Computer Architecture News, 37(1):37--48, 2009. Google ScholarDigital Library
	S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a reactive immune system for software services. Proceedings of the general track, 2005 USENIX annual technical conference: April 10-15, 2005, Anaheim, CA, USA, pages 149--161, 2005. Google ScholarDigital Library
	S. Sidiroglou-Douskos, E. Lahtinen, F. Long, P. Piselli, and M. Rinard. Automatic error elimination by multi-application code transfer. Technical Report MIT-CSAIL-TR-2014-024, MIT CSAIL, August 2014.Google Scholar
	M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discovery. Pearson Education, 2007. Google ScholarDigital Library
	W. Tielei, W. Tao, L. Zhiqiang, and Z. Wei. IntScope: Automatically detecting integer overflow vulnerability in X86 binary using symbolic execution. In 16th Annual Network & Distributed System Security Symposium, 2009.Google Scholar
	T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A checksum-aware directed fuzzing tool for automatic software vulnerability detection. In Proceedings of the 31st IEEE Symposium on Security & Privacy (Oakland'10), 2010. Google ScholarDigital Library
	X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. Kaashoek. Improving integer security for systems with KINT. In Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, pages 163--177. USENIX Association, 2012. Google ScholarDigital Library
	C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. IntPatch: Automatically fix integer-overflow-to-buffer-overflow vulnerability at compile-time. Computer Security--ESORICS 2010, pages 71--86, 2010. Google ScholarDigital Library

 Cited By
View all

 Index Terms

	Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement
	Computing methodologies

	Symbolic and algebraic manipulation

	Software and its engineering

	Software creation and management

	Software verification and validation

	Theory of computation

	Models of computation

	Abstract machines

	Semantics and reasoning

	Program reasoning

	Abstraction

 Recommendations

 	Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement
ASPLOS '15: Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems

		We present a new technique and system, DIODE, for auto- matically generating inputs that trigger overflows at memory allocation sites. DIODE is designed to identify relevant sanity checks that inputs must satisfy to trigger overflows at target memory ...

Read More

	Targeted Automatic Integer Overflow Discovery Using Goal-Directed Conditional Branch Enforcement
ASPLOS '15

		We present a new technique and system, DIODE, for auto- matically generating inputs that trigger overflows at memory allocation sites. DIODE is designed to identify relevant sanity checks that inputs must satisfy to trigger overflows at target memory ...

Read More

	ESBMC 5.0: an industrial-strength C model checker
ASE '18: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering

		ESBMC is a mature, permissively licensed open-source context-bounded model checker for the verification of single- and multi-threaded C programs. It can verify both predefined safety properties (e.g., bounds check, pointer safety, overflow) and user-...

Read More

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Article

	Information
	Contributors

	Published in

ACM SIGARCH Computer Architecture News Volume 43, Issue 1
ASPLOS'15
March 2015
676 pages
ISSN:0163-5964
DOI:10.1145/2786763
	Editor:
	Doug DeGrootacm dot org

Issue’s Table of Contents

	
ASPLOS '15: Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems
March 2015
720 pages
ISBN:9781450328357
DOI:10.1145/2694344
	General Chairs:
	Ozcan OzturkBilkent University, Turkey
,
	Kemal EbciogluGlobal Supercomputing, USA
,
	Program Chair:
	Sandhya DwarkadasUniversity of Rochester, USA

Copyright © 2015 ACM
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 14 March 2015

Check for updates

Author Tags
	bug detection
	integer overflow
	targeted symbolic execution

Qualifiers
	research-article

Conference

Funding Sources

	

Other Metrics
View Article Metrics

	Bibliometrics
	Citations31

	Article Metrics
	31
Total Citations
View Citations
	1,701
Total Downloads

	Downloads (Last 12 months)79
	Downloads (Last 6 weeks)11

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/2786763.2694389
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Issue’s Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

