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Skip Abstract SectionAbstract

We present a new technique and system, DIODE, for auto- matically generating inputs that trigger overflows at memory allocation sites. DIODE is designed to identify relevant sanity checks that inputs must satisfy to trigger overflows at target memory allocation sites, then generate inputs that satisfy these sanity checks to successfully trigger the overflow. DIODE works with off-the-shelf, production x86 binaries. Our results show that, for our benchmark set of applications, and for every target memory allocation site exercised by our seed inputs (which the applications process correctly with no overflows), either 1) DIODE is able to generate an input that triggers an overflow at that site or 2) there is no input that would trigger an overflow for the observed target expression at that site.
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