

skip to main content

 [image: ACM Digital Library home]

 [image: ACM corporate logo]

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 10.1145/2688500.2688501acmconferencesArticle/Chapter ViewAbstractPublication PagesppoppConference Proceedingsconference-collectionsppopp
	Conference
	Proceedings
	Upcoming Events
	Authors
	Affiliations
	Award Winners
	More

 	Home
	Conferences
	PPOPP
	Proceedings
	PPoPP 2015
	More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms

research-article

Share on	
	
	
	
	

More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms

 	Author:
	 [image: Author Picture]Vincent Gramoli
 NICTA, Australia / University of Sydney, Australia

 NICTA, Australia / University of Sydney, Australia
View Profile

Authors Info & Claims

 PPoPP 2015: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel ProgrammingJanuary 2015Pages 1–10https://doi.org/10.1145/2688500.2688501

Published:24 January 2015Publication History[image: Check for updates on crossmark]

	101citation
	1,661
	Downloads

Metrics
Total Citations101
Total Downloads1,661
Last 12 Months80
Last 6 weeks3

	Get Citation Alerts[bookmark: id-hatemile-navigation-6073290063892647-7]New Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

[bookmark: id-hatemile-navigation-6073290063892647-9]New Citation Alert!

Please log in to your account

	
	
	Publisher Site

	
	Get Access

PPoPP 2015: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithmsPages 1–10

 PreviousChapterNextChapter

[image: ACM Digital Library]

ABSTRACT

		 In this paper, we present the most extensive comparison of synchronization techniques. We evaluate 5 different synchronization techniques through a series of 31 data structure algorithms from the recent literature on 3 multicore platforms from Intel, Sun Microsystems and AMD. To this end, we developed in C/C++ and Java a new micro-benchmark suite, called Synchrobench, hence helping the community evaluate new data structures and synchronization techniques. The main conclusion of this evaluation is threefold: (i) although compare-and-swap helps achieving the best performance on multicores, doing so correctly is hard; (ii) optimistic locking offers varying performance results while transactional memory offers more consistent results; and (iii) copy-on-write and read-copy-update suffer more from contention than any other technique but could be combined with others to derive efficient algorithms.

	

 References

	JSE-7. http://docs.oracle.com/javase/7/docs/api/.Google Scholar[image: Google Scholar]
	D. Alistarh, J. Kopisky, J. Li, and N. Shavit. The SprayList: A scalable relaxed priority queue. Technical Report TR-2014-16, MSR, 2014.Google Scholar[image: Google Scholar]
	J. Antony, P. P. Janes, and A. P. Rendell. Exploring thread and memory placement on NUMA architectures: Solaris and Linux, UltraSPARC/FirePlane and Opteron/Hypertransport. In HiPC, pages 338–352, 2006. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Arbel and H. Attiya. Concurrent updates with RCU: Search tree as an example. In PODC, pages 196–205, 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races. In OOPSLA, pages 382–400, 2000. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Nonscalable locks are dangerous. In Proceedings of the Linux Symposium, Ottawa, Canada, 2012.Google Scholar[image: Google Scholar]
	N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent binary search tree. In PPoPP, pages 257–268, 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications for multi-processing. In IISWC, pages 35–46, 2008.Google Scholar[image: Google Scholar]
	B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun. Transactional collection classes. In PPoPP, pages 56–67, 2007. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas. A study of the behavior of synchronization methods in commonly used languages and systems. In IPDPS, pages 1309–1320, 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable address spaces using RCU balanced trees. In ASPLOS, pages 199–210, 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	C. Click. A lock-free hash table, 2007. http://www. azulsystems.com/events/javaone_2007/2007_ LockFreeHash.pdf.Google Scholar[image: Google Scholar]
	T. Crain, V. Gramoli, and M. Raynal. A contention-friendly methodology for search structures. Technical Report RR-1989, INRIA, 2012.Google Scholar[image: Google Scholar]
	T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree. In PPoPP, pages 161–170, 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary search tree. In Euro-Par, pages 229–240, 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Crain, V. Gramoli, and M. Raynal. No hot spot non-blocking skip list. In ICDCS, pages 196–205, 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing ownership records. In PPoPP, pages 67–78, 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know about synchronization but were afraid to ask. In SOSP, pages 33–48, 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: the secret of scaling concurrent search structures. In ASPLOS, 2015.Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	To appear.Google Scholar[image: Google Scholar]
	D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages 194–208, 2006. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	I. Dick, A. Fekete, and V. Gramoli. Logarithmic data structures for multicores. Technical Report 697, University of Sydney, 2014.Google Scholar[image: Google Scholar]
	D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent binary search trees via logical ordering. In PPoPP, pages 343–356, 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. Dragojevi´c, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can be more than a research toy. Commun. ACM, 54(4):70–77, 2011. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search trees. In PODC, pages 131–140, 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based software transactional memory. In PPoPP, pages 237–246, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. Technical Report LPD-REPORT-2009-002, EPFL, 2009.Google Scholar[image: Google Scholar]
	P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC, pages 93–108, 2009. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Quantifying the mismatch between emerging scale-out applications and modern processors. TOCS, 30(4):15:1–15:24, 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In PODC, pages 50–59, 2004. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	K. Fraser. Practical lock freedom. PhD thesis, Cambridge University, September 2003.Google Scholar[image: Google Scholar]
	M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cacheoblivious algorithms. In FOCS, page 285, 1999. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in Practice. Addison-Wesley, 2005. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	V. Gramoli and R. Guerraoui. Democratizing transactional programming. Commun. ACM, 57(1):86–93, 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	V. Gramoli and R. Guerraoui. Reusable concurrent data types. In ECOOP, pages 182–206, 2014.Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A software transactional memory for many-cores. In EuroSys, pages 351–364, 2012. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a benchmark for software transactional memory. In EuroSys, pages 315–324, 2007. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer. TMunit: Testing software transactional memories. In 4th ACM SIGPLAN Workshop on Transactional Computing, 2009.Google Scholar[image: Google Scholar]
	D. Harmanci, V. Gramoli, P. Felber, and C. Fetzer. Extensible transactional memory testbed. J. of Parallel and Distributed Computing, 70(10):1053–1067, March 2010. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC, pages 300–314, 2001. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions. In PPoPP, pages 48–60, 2005. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and N. Shavit. A lazy concurrent list-based set algorithm. Parallel Processing Letters, 17(4):411–424, 2007.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-concurrent transactional objects. In PPoPP, pages 207–216, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic skiplist algorithm. In SIROCCO, pages 124–138, 2007. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an example. In ICDCS, 2003. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized data structures. In PODC, pages 92–101, 2003. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures. In ISCA, pages 289–300, 1993. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauffman, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive software transactional memory. Transactions on HiPEAC, 5(2), 2010.Google Scholar[image: Google Scholar]
	D. Lea. JSR-166 specification request group. http://g.oswego. edu/dl/concurrency-interest.Google Scholar[image: Google Scholar]
	J. J. Levandoski and S. Sengupta. The BW-Tree: A latch-free B-tree for log-structured flash storage. IEEE Data Eng. Bull., 36(2):56–62, 2013.Google Scholar[image: Google Scholar]
	Y. Liu, K. Zhang, and M. Spear. Dynamic-sized nonblocking hash tables. In PODC, pages 242–251, 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	A. Marowka. TBBench: A micro-benchmark suite for Intel threading building blocks. JIPS, 8(2):331–346, 2012.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma, and M. Soni. Read-copy update. In AUUG, 2001.Google Scholar[image: Google Scholar]
	M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In SPAA, pages 73–82, 2002. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. M. Michael. The balancing act of choosing nonblocking features. Commun. ACM, 56(9):46–53, 2013. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. M. Michael and M. L. Scott. Simple, fast, and practical nonblocking and blocking concurrent queue algorithms. In PODC, pages 267–275, 1996. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	M. Mohamedin, B. Ravindran, and R. Palmieri. ByteSTM: Virtual machine-level Java software transactional memory. In COORDINATION, pages 166–180, 2013.Google Scholar[image: Google Scholar]
	A. Natarajan and N. Mittal. Fast concurrent lock-free binary search trees. In PPoPP, pages 317–328, 2014. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	R. Odaira, J. G. Castaños, and T. Nakaike. Do C and Java programs scale differently on hardware transactional memory? In IISWC, pages 34–43, 2013.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33, June 1990. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation. In DISC, pages 284–298, 2006. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process communication library. Technical report, Chalmers University of Technology, March 2002.Google Scholar[image: Google Scholar]
	H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries. In SAC, pages 1438–1445. ACM, 2004. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J. Parallel Distrib. Comput., 68(7):1008–1020, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	I. Umar, O. J. Anshus, and P. H. Ha. DeltaTree: A practical localityaware concurrent search tree. Technical Report 2013-74, University of Tromso, Norway, Oct. 2013.Google Scholar[image: Google Scholar]
	B. Wicht. Binary trees implementations comparison for multicore programming. Technical report, Switzerland HES-SO University of applied science, 2012.Google Scholar[image: Google Scholar]
	R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S. Lee. Kicking the tires of software transactional memory: why the going gets tough. In SPAA, pages 265–274, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal, and T. Harris. Wormbench: A configurable workload for evaluating transactional memory systems. In MEDEA, pages 61–68, 2008. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal, I. Hur, and M. Valero. Profiling and optimizing transactional memory applications. International Journal of Parallel Programming, 40(1):25–56, 2012.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]

 Cited By
View all

 [image:]

 Index Terms

	More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms
	Computing methodologies

	Concurrent computing methodologies

	Concurrent programming languages

	Information systems

	Information storage systems

	Record storage systems

	Record storage alternatives

	Software and its engineering

	Software notations and tools

	General programming languages

	Language types

	Concurrent programming languages

	Software organization and properties

	Contextual software domains

	Operating systems

	Process management

 Recommendations

 	More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms
PPoPP '15

		 In this paper, we present the most extensive comparison of synchronization techniques. We evaluate 5 different synchronization techniques through a series of 31 data structure algorithms from the recent literature on 3 multicore platforms from Intel, ...

Read More

	Looking for efficient implementations of concurrent objects
PaCT'11: Proceedings of the 11th international conference on Parallel computing technologies

		As introduced by Taubenfeld, a contention-sensitive implementation of a concurrent object is an implementation such that the overhead introduced by locking is eliminated in the common cases, i.e., when there is no contention or when the operations ...

Read More

	Transactional Acceleration of Concurrent Data Structures
SPAA '15: Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures

		Concurrent data structures are a fundamental building block for scalable multi-threaded programs. While Transactional Memory (TM) was originally conceived as a mechanism for simplifying the creation of concurrent data structures, modern hardware TM ...

Read More

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Publication

	Information
	Contributors

	Published in

 [image: cover image ACM Conferences]
PPoPP 2015: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
January 2015
290 pages
ISBN:9781450332057
DOI:10.1145/2688500
	General Chair:
	[image: Author Picture]Albert CohenINRIA, France
,
	Program Chair:
	[image: Author Picture]David GroveIBM Research, USA

	[image: cover image ACM SIGPLAN Notices]
ACM SIGPLAN Notices Volume 50, Issue 8
PPoPP '15
August 2015
290 pages
ISSN:0362-1340
EISSN:1558-1160
DOI:10.1145/2858788
	Editor:
	[image: Author Picture]Andy GillUniversity of Kansas, Lawrence, KS

Issue’s Table of Contents

Copyright © 2015 ACM
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 24 January 2015

 Permissions
Request permissions about this article.
Request Permissions

Check for updates
[image: Check for updates on crossmark]

Author Tags
	Benchmark
	data structure
	lock-freedom
	reusability

Qualifiers
	research-article

Conference

 Acceptance Rates
Overall Acceptance Rate230of1,014submissions,23%

Funding Sources

	

 [image:]

Other Metrics
View Article Metrics

	Bibliometrics
	Citations101

	Article Metrics
	101
Total Citations
View Citations
	1,661
Total Downloads

	Downloads (Last 12 months)80
	Downloads (Last 6 weeks)3

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/2688500.2688501
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 [image: ACM Digital Library home]

 [image: ACM home]

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

