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ABSTRACT


		 In this paper, we present the most extensive comparison of synchronization techniques. We evaluate 5 different synchronization techniques through a series of 31 data structure algorithms from the recent literature on 3 multicore platforms from Intel, Sun Microsystems and AMD. To this end, we developed in C/C++ and Java a new micro-benchmark suite, called Synchrobench, hence helping the community evaluate new data structures and synchronization techniques. The main conclusion of this evaluation is threefold: (i) although compare-and-swap helps achieving the best performance on multicores, doing so correctly is hard; (ii) optimistic locking offers varying performance results while transactional memory offers more consistent results; and (iii) copy-on-write and read-copy-update suffer more from contention than any other technique but could be combined with others to derive efficient algorithms. 
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