skip to main content
10.1145/2671015.2671017acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

Multiphase surface tracking with explicit contouring

Authors Info & Claims
Published:11 November 2014Publication History

ABSTRACT

We introduce a novel framework for tracking multiphase interfaces with explicit contouring technique. In our framework, an unsigned distance function and an additional indicator function are used to represent the multiphase system. Our method maintains the explicit polygonal meshes that define the multiphase interfaces. At each step, distance function and indicator function are updated via semi-Lagrangian path tracing from the meshes of the last step. Interface surfaces are then reconstructed by polygonization procedures with precomputed stencils and further smoothed with a feature-preserving non-manifold smoothing algorithm to stay in good quality. Our method is easy to be implemented and incorporated into multiphase simulation, such as immiscible fluids, crystal grain growth and geometric flows. We demonstrate our method with several level set tests, including advection, propagation, etc., and couple it to some existing fluid simulators. The results show that our approach is stable, flexible, and effective for tracking multiphase interfaces.

Skip Supplemental Material Section

Supplemental Material

p31-li.mp4

mp4

19.9 MB

References

  1. Anderson, J. C., Garth, C., Duchaineau, M. A., and Joy, K. I. 2008. Discrete multi-material interface reconstruction for volume fraction data. Computer Graphics Forum 27, 3, 1015--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anderson, J. C., Garth, C., Duchaineau, M. A., and Joy, K. I. 2010. Smooth, volume-accurate material interface reconstruction. IEEE Trans. Vis. Comput. Graph. 16, 5, 802--814. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Balsys, R. J., and Suffern, K. G. 2005. Adaptive Polygonisation of Non-Manifold Implicit Surfaces. In Computer Graphics, Imaging and Vision, 257--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1 (Jan.), 19--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bertram, M., Reis, G., Lengen, R. H. V., K?hn, S., and Hagen, H. 2005. Non-manifold mesh extraction from time-varying segmented volumes used for modeling a human heart. In In Eurovis 05, Eurographics Association, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bloomenthal, J., and Ferguson, K. 1995. Polygonization of non-manifold implicit surfaces. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '95, 309--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bronson, J., Levine, J., and Whitaker, R. 2013. Lattice cleaving: Conforming tetrahedral meshes of multimaterial domains with bounded quality. In Proceedings of the 21st International Meshing Roundtable, X. Jiao and J.-C. Weill, Eds. Springer Berlin Heidelberg, 191--209.Google ScholarGoogle Scholar
  10. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM Trans. on Graphics (SIGGRAPH 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '99, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dey, T. K., Janoos, F., and Levine, J. A. 2012. Meshing interfaces of multi-label data with delaunay refinement. Eng. with Comput. 28, 1 (Jan.), 71--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH 2004) 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gueziec, A., and Hummel, R. 1995. Exploiting triangulated surface extraction using tetrahedral decomposition. Visualization and Computer Graphics, IEEE Transactions on 1, 4, 328--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hege, H.-C., Seebass, M., Stalling, D., and Zöckler, M. 1997. A generalized marching cubes algorithm based on non-binary classifications. Tech. Rep. SC-97-05, ZIB, Takustr.7, 14195 Berlin.Google ScholarGoogle Scholar
  16. Hubeli, A., and Gross, M. 2000. Fairing of non-manifolds for visualization. In Proceedings of the conference on Visualization '00, IEEE Computer Society Press, Los Alamitos, CA, USA, VIS '00, 407--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2 (Jan.), 612--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, B. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29, 6 (Dec.), 175:1--175:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Misztal, M. K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B. B., Baerentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '12, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences), 2003 ed. Springer, Nov.Google ScholarGoogle Scholar
  24. Osher, S., and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 1 (Nov.), 12--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reitinger, B., Bornik, A., and Beichel, R. 2005. Constructing Smooth Non-Manifold Meshes of Multi-Labeled Volumetric Datasets. In International Conference in Central Europe on Computer Graphics and Visualization, 227--234.Google ScholarGoogle Scholar
  26. Saye, R. I., and Sethian, J. A. 2011. The voronoi implicit interface method for computing multiphase physics. Proceedings of the National Academy of Sciences 108, 49, 19498--19503.Google ScholarGoogle ScholarCross RefCross Ref
  27. Saye, R., and Sethian, J. 2012. Analysis and applications of the voronoi implicit interface method. Journal of Computational Physics 231, 18, 6051--6085. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Saye, R. 2013. An algorithm to mesh interconnected surfaces via the voronoi interface. Engineering with Computers, 1--17.Google ScholarGoogle Scholar
  29. Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '95, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vollmer, J., Mencl, R., and Mller, H. 1999. Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum 18, 3, 131--138.Google ScholarGoogle ScholarCross RefCross Ref
  31. Wu, Z., and Sullivan, J. M. 2003. Multiple material marching cubes algorithm. International Journal for Numerical Methods in Engineering 58, 2, 189--207.Google ScholarGoogle ScholarCross RefCross Ref
  32. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '06, 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multiphase surface tracking with explicit contouring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          VRST '14: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology
          November 2014
          238 pages
          ISBN:9781450332538
          DOI:10.1145/2671015

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 November 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate66of254submissions,26%

          Upcoming Conference

          VRST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader