skip to main content
10.1145/2642918.2647405acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

FlexSense: a transparent self-sensing deformable surface

Authors Info & Claims
Published:05 October 2014Publication History

ABSTRACT

We present FlexSense, a new thin-film, transparent sensing surface based on printed piezoelectric sensors, which can reconstruct complex deformations without the need for any external sensing, such as cameras. FlexSense provides a fully self-contained setup which improves mobility and is not affected from occlusions. Using only a sparse set of sensors, printed on the periphery of the surface substrate, we devise two new algorithms to fully reconstruct the complex deformations of the sheet, using only these sparse sensor measurements. An evaluation shows that both proposed algorithms are capable of reconstructing complex deformations accurately. We demonstrate how FlexSense can be used for a variety of 2.5D interactions, including as a transparent cover for tablets where bending can be performed alongside touch to enable magic lens style effects, layered input, and mode switching, as well as the ability to use our device as a high degree-of-freedom input controller for gaming and beyond.

Skip Supplemental Material Section

Supplemental Material

uistf3900-file3.mp4

mp4

76.3 MB

References

  1. Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., and Singh, K. Exploring Interactive Curve and Surface Manipulation Using a Bend and Twist Sensitive Input Strip. In I3D'99, ACM, 1999, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Caglioti, V., Giusti, A., Mureddu, L., and Taddei, P. A Manipulable Vision-Based 3D Input Device for Space Curves. In Articulated Motion and Deformable Objects. Springer, 2008, 309--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Danisch, L. A., Englehart, K., and Trivett, A. Spatially continuous six-degrees-of-freedom position and orientation sensor. In Photonics East, International Society for Optics and Photonics, 1999, 48--56.Google ScholarGoogle Scholar
  4. Evgeniou, T., Pontil, M., and Poggio, T. Regularization Networks and Support Vector Machines. In Advances in Computational Mathematics, 2000.Google ScholarGoogle Scholar
  5. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-changing Devices. In UIST'12, ACM, 2012, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gallant, D. T., Seniuk, A. G., and Vertegaal, R. Towards More Paper-like Input: Flexible Input Devices for Foldable Interaction Styles. In UIST'08, ACM, Oct. 2008, 283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gomes, A., Nesbitt, A., and Vertegaal, R. MorePhone: A Study of Actuated Shape Deformations for Flexible Thin-Film Smartphone Notifications. In CHI'13, ACM, Apr. 2013, 583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Herkenrath, G., Karrer, T., and Borchers, J. TWEND: Twisting and Bending as new Interaction Gesture in Mobile Devices. In CHI'08 EA, ACM, Apr. 2008, 3819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Holman, D., Vertegaal, R., Altosaar, M., Troje, N., and Johns, D. PaperWindows: Interaction Techniques for Digital Paper. In CHI'05, ACM, 2005, 591--599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica (1976).Google ScholarGoogle Scholar
  11. Kato, H., and Billinghurst, M. Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In IWAR'99, IEEE Computer Society, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kato, T., Yamamoto, A., and Higuchi, T. Shape recognition using piezoelectric thin films. In IEEE Industrial Technology, vol. 1, IEEE, 2003, 112--116.Google ScholarGoogle Scholar
  13. Khalilbeigi, M., Lissermann, R., Kleine, W., and Steimle, J. Foldme: Interacting with double-sided foldable displays. In TEI'12, ACM, 2012, 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Khalilbeigi, M., Lissermann, R., Muhlhauser, M., and Steimle, J. Xpaaand: Interaction Techniques for Rollable Displays. In CHI'11, ACM, 2011, 2729--2732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kildal, J., Paasovaara, S., and Aaltonen, V. Kinetic Device: Designing Interactions with a Deformable Mobile Interface. In CHI EA'12, May 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Konieczny, J., Shimizu, C., Meyer, G., and Colucci, D. A Handheld Flexible Display System, 2005.Google ScholarGoogle Scholar
  17. Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays. In CHI'11, ACM, May 2011, 1303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Leal, A., Bowman, D., Schaefer, L., Quek, F., and Stiles, C. K. 3D Sketching Using Interactive Fabric for Tangible and Bimanual Input. In GI'11, Canadian Human-Computer Communications Society, 2011, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, J. C., Hudson, S. E., and Tse, E. Foldable interactive displays. In UIST'08, ACM, 2008, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, S.-S. et al. How Users Manipulate Deformable Displays as Input Devices. In CHI'10, ACM, Apr. 2010, 1647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, S.-S. et al. FlexRemote: Exploring the effectiveness of deformable user interface as an input device for TV. In HCI International 2011--Posters' Extended Abstracts. Springer, 2011, 62--65.Google ScholarGoogle Scholar
  22. Punpongsanon, P., Iwai, D., and Sato, K. DeforMe: Projection-based Visualization of Deformable Surfaces Using Invisible Textures. In ETech SA'13, ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rendl, C. et al. PyzoFlex: Printed Piezoelectric Pressure Sensing Foil. In UIST'12, ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rosenberg, I., and Perlin, K. The UnMousePad: An Interpolating Multi-touch Force-sensing Input Pad. In ACM Transactions on Graphics (TOG), vol. 28, ACM, 2009, 65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Roudaut, A., Karnik, A., Lochtefeld, M., and Subramanian, S. Morphees: Toward High "Shape Resolution" in Self-Actuated Flexible Mobile Devices. In CHI'13, ACM, Apr. 2013, 593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sato, T., Mamiya, H., Koike, H., and Fukuchi, K. PhotoelasticTouch: Transparent Rubbery Tangible Interface Using an LCD and Photoelasticity. In UIST'09, ACM, 2009, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schölkopf, B., Herbrich, R., and Smola, A. A Generalized Representer Theorem. In Conference on Computational Learning Theory, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schwesig, C., Poupyrev, I., and Mori, E. Gummi: A Bendable Computer. In CHI'04, ACM, Apr. 2004, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Smith, R. T., Thomas, B. H., and Piekarski, W. Digital Foam Interaction Techniques for 3D Modeling. In VRST'08, ACM, 2008, 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sorkine, O., and Alexa, M. As-rigid-as-possible surface modeling. In SGP'07, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Steimle, J., Jordt, A., and Maes, P. Flexpad: Highly Flexible Bending Interactions for Projected Handheld Displays. In CHI'13, ACM, Apr. 2013, 237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tajika, T., Yonezawa, T., and Mitsunaga, N. Intuitive Page-turning Interface of E-books on Flexible E-paper based on User Studies. In MM'08, ACM, Oct. 2008, 793. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tarun, A. P. et al. PaperTab: An Electronic Paper Computer with Multiple Large Flexible Electrophoretic Displays. In CHI EA'13, ACM, 2013, 3131--3134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Taylor, J. et al. User-specific hand modeling from monocular depth sequences. In CVPR, 2014.Google ScholarGoogle Scholar
  35. Tikhonov, A., Leonov, A., and A.G., Y. Nonlinear Ill-Posed Problems. In Kluwer Academic Publishers, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  36. Warren, K., Lo, J., Vadgama, V., and Girouard, A. Bending the Rules: Bend Gesture Classification for Flexible Displays. In CHI'13, ACM, Apr. 2013, 607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Watanabe, J., Mochizuki, A., and Horry, Y. Bookisheet: Bendable Device for Browsing Content Using the Metaphor of Leafing Through the Pages. In UbiComp'08, ACM, Sept. 2008, 360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wellner, P. Interacting with paper on the DigitalDesk. Communications of the ACM 36, 7 (1993), 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ye, Z., and Khalid, H. Cobra: Flexible Displays for Mobile Gaming Scenarios. In CHI EA'10, ACM, 2010, 4363--4368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zimmerman, T. G., Lanier, J., Blanchard, C., Bryson, S., and Harvill, Y. A Hand Gesture Interface Device. In CHI'87, ACM, 1987, 189--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zirkl, M. et al. An All-Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface. Advanced Materials, Volume 23, Issue 18 (2011), 2069--2074.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. FlexSense: a transparent self-sensing deformable surface

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '14: Proceedings of the 27th annual ACM symposium on User interface software and technology
      October 2014
      722 pages
      ISBN:9781450330695
      DOI:10.1145/2642918

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 October 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '14 Paper Acceptance Rate74of333submissions,22%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader