skip to main content
10.1145/2642918.2647351acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Through the combining glass

Published:05 October 2014Publication History

ABSTRACT

Reflective optical combiners like beam splitters and two way mirrors are used in AR to overlap digital contents on the users' hands or bodies. Augmentations are usually unidirectional, either reflecting virtual contents on the user's body (Situated Augmented Reality) or augmenting user's reflections with digital contents (AR mirrors). But many other novel possibilities remain unexplored. For example, users' hands, reflected inside a museum AR cabinet, can allow visitors to interact with the artifacts exhibited. Projecting on the user's hands as their reflection cuts through the objects can be used to reveal objects' internals. Augmentations from both sides are blended by the combiner, so they are consistently seen by any number of users, independently of their location or, even, the side of the combiner through which they are looking. This paper explores the potential of optical combiners to merge the space in front and behind them. We present this design space, identify novel augmentations/interaction opportunities and explore the design space using three prototypes.

Skip Supplemental Material Section

Supplemental Material

uistf1087-file3.mp4

mp4

80.3 MB

References

  1. Anderson, F., Grossman, T., Matejka, J., and Fitzmaurice, G. YouMove: enhancing movement training with an augmented reality mirror. In Proc. of UIST'13. 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benko, H. and Wilson, A.D. Pinch-the-sky dome: freehand multi-point interactions with immersive omnidirectional data. In Proc. of CHI'10 Extended Abstracts. 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bertalini, M., Mirrors and the mind. The Psychologist, 2010. 23(2): p. 112.Google ScholarGoogle Scholar
  4. Berthaut, F., Marshall, M., Subramanian, S., and Hachet, M. Rouages: Revealing the Mechanisms of Digital Musical Instruments to the Audience. In Proc. of NIME. 2013.Google ScholarGoogle Scholar
  5. Bimber, O. and Raskar, R., Spatial Augmented Reality: Merging Real and Virtual Worlds. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., and Kong, D. Vermeer: direct interaction with a 360 degree viewable 3D display. In Proc. of UIST'11. 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Campbell, F.W., The depth of field of the human eye. Journal of Modern Optics, 1957. 4: p. 157.Google ScholarGoogle ScholarCross RefCross Ref
  8. De la Riviere, J.B., Dittlo, N., Emmanuel, O., Kervegant, C., and Courtois, M. Holocubtile: 3D multitouch brings the virtual world into the user's hands. In Proc. of ITS'10. 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eisert, P., Rurainsky, J., and Fechteler, P. Virtual Mirror: Real-Time Tracking of Shoes in Augmented Reality Environments. In Proc. of ICIP'07. 2007. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  10. Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., Computer graphics: principles and practice (2nd ed.). 1990: Addison-Wesley Publishing Co., Inc. 1174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fujinami, K., Kawsar, F., and Nakajima, T. AwareMirror: a personalized display using a mirror. In Proc. of 3rd international conference on Pervasive Computing. 2005. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fujinami, K., Ushida, K., Tanaka, Y., Naemura, T., and Harahima, H. i-mirror: An Interaction/Information Environment Based on a Mirror Metaphor Aiming to Install into Our Life Space. In Proc. of ICAT. 2002.Google ScholarGoogle Scholar
  13. Hachet, M., Bossavit, B., Cohe, A., and Riviere, J.P. Toucheo: multitouch and stereo combined in a seamless workspace. In Proc. of UIST'11. 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A.D. HoloDesk: direct 3d interactions with a situated see-through display. In Proc. of CHI'12. 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hirsch, M., Izadi, S., Holtzman, H., and Raskar, R. 8D display: a relightable glasses-free 3D display. In Proc. of SIGGRAPH'12 Posters. 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hoffman, D.M., Girshick, A.R., Akeley, K., and Banks, M.S., Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 2008. 8(3): p. 33.Google ScholarGoogle ScholarCross RefCross Ref
  17. Holliman, N.S., Dodgson, N.A., Favalora, G.E., and Pockett, L., Three-Dimensional Displays: A Review and Applications Analysis. IEEE Trans. on Broadcasting, 2011. 57(2): p. 362--371.Google ScholarGoogle Scholar
  18. Karnik, A., Mayol-Cuevas, W., and Subramanian, S. MUSTARD: a multi user see through AR display. In Proc. of CHI'12. 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Korsch, D., Reflective Optics. 1991: Academic Press.Google ScholarGoogle Scholar
  20. Krueger, M., Artifitial Reality II. 1991: Addison WesleyGoogle ScholarGoogle Scholar
  21. Li, W.H.A. and Fu, H. Augmented reflection of reality. In Proc. of SIGGRAPH'12 ETech. 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Percival, A.S., The prescribing of spectacles. 1920: J. Wright.Google ScholarGoogle Scholar
  23. Perlin, K., Paxia, S., and Kollin, J.S. An autostereoscopic display. In Proc. of SIGGRAPH'00. 2000. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Poston, T. and Serra, L. The virtual workbench: dextrous VR. In Proc. of VRST'64. 1994. World Scientific Publishing Co., Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Raskar, R., Welch, G., Low, K.-L., and Bandyopadhyay, D. Shader Lamps: Animating Real Objects With ImageBased Illumination. In Proc. of 12th Eurographics Workshop on Rendering Techniques. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Regenbrecht, H.T., Franz, E.A., McGregor, G., Dixon, B.G., and Hoermann, S., Beyond the looking glass: Fooling the brain with the augmented mirror box. Presence: Teleoper. Virtual Environ., 2011. 20(6). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sato, H., Kitahara, I., and Ohta, Y., MR-Mirror: A Complex of Real and Virtual Mirrors, in Virtual and Mixed Reality, Shumaker, R., Editor. 2009, Springer Berlin Heidelberg. p. 482--491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sheard, C., The prescription of prisms. American Journal of Optometry, 1934. 11: p. 364.Google ScholarGoogle ScholarCross RefCross Ref
  29. Shibata, T., Kim, J., Hoffman, D.M., and Banks, M.S., The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 2011. 8(11): p. 11.Google ScholarGoogle ScholarCross RefCross Ref
  30. Starch, D.A., Demonstration of the trial and error methid of learning. The Psychological Bulletin, 1910. 5.Google ScholarGoogle Scholar
  31. Stratton, G.M., A mirror pseudoscope and the limit of visible depth. Psychological Review, 1898. 5(6): p. 632.Google ScholarGoogle Scholar
  32. Stratton, G.M., Upright Vision and the Retinal Image. Psychological Review, 1897. 4(2): p. 182.Google ScholarGoogle Scholar
  33. Stratton, G.M., Vision without inversion of the retinal image. Psychological Review, 1897. 4(5): p. 463.Google ScholarGoogle Scholar
  34. Sullivan, A. DepthCube solid-state 3D volumetric display. In Proc. of SPIE. 2004.Google ScholarGoogle Scholar
  35. Valkov, D., Steinicke, F., Bruder, G., and Hinrichs, K. 2d touching of 3d stereoscopic objects. In Proc. of CHI'11. 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ware, C., Arthur, K., and Booth, K.S. Fish tank virtual reality. In Proc. of CHI '93 1993. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yoshida, T., Shimizu, K., Kurogi, T., Kamuro, S., Minamizawa, K., Nii, H., and Tachi, S. RePro3D: fullparallax 3D display with haptic feedback using retroreflective projection technology. In Proc. of ISVRI'11. 2011. IEEEGoogle ScholarGoogle Scholar

Index Terms

  1. Through the combining glass

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '14: Proceedings of the 27th annual ACM symposium on User interface software and technology
      October 2014
      722 pages
      ISBN:9781450330695
      DOI:10.1145/2642918

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 October 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '14 Paper Acceptance Rate74of333submissions,22%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader