skip to main content
10.1145/2643188.2643189acmotherconferencesArticle/Chapter ViewAbstractPublication PagessccgConference Proceedingsconference-collections
research-article

A survey of direction-preserving layout strategies

Published:28 May 2014Publication History

ABSTRACT

In this paper we analyze different layout algorithms that preserve relative directions in geo-referenced networks. This is an important criterion for many sensor networks such as the electric grid and other supply networks, because it enables the user to match the geographic setting with the drawing on the screen. Even today, the layout of these networks are often created manually. This is due to the requirement that these layouts must respect geographic references but should still be easy to read and understand. The range of available automatic algorithms spans from general graph layouts over schematic maps to semi-realistic drawings. At first sight, schematics seem to be a promising compromise between geographic correctness and readability. The former property exploits the mental map of the user while the latter makes it easier for the user to learn about the network structure. We investigate different algorithms for such maps together with different visualization techniques.

In particular, the group of octi-linear layouts is prominent in handcrafted subway maps. These algorithms have been used extensively to generate drawings for subway maps. Also known as Metro Map layouts, only horizontal, vertical and diagonal directions are allowed. This increases flexibility and makes the resulting layout look similar to the well-known subway maps of large cities. The key difference to general graph layout algorithms is that geographic relations are respected in terms of relative directions.

However, it is not clear, whether this metaphor can be transferred from metro maps to other domains. We discuss applicability of these different approaches for geo-based networks in general with the electric grid as a use-case scenario.

References

  1. Avelar, S., and Müller, M. 2000. Generating topologically correct schematic maps. In Proceedings of the 9th International Symposium on Spatial Data Handling, 4--28.Google ScholarGoogle Scholar
  2. Barkowsky, T., Latecki, L. J., and Richter, K.-F. 2000. Schematizing maps: Simplification of geographic shape by discrete curve evolution. In Spatial Cognition II, vol. 1849 of Lecture Notes in Computer Science. Springer, Heidelberg, 41--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bekos, M. A., Kaufmann, M., Symvonis, A., and Wolff, A. 2007. Boundary labeling: Models and efficient algorithms for rectangular maps. Computational Geometry 36, 3, 215--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Böttger, J., Brandes, U., Deussen, O., and Ziezold, H. 2008. Map warping for the annotation of metro maps. Computer Graphics and Applications, IEEE 28, 5, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cabello, S., and Kreveld, M. 2003. Approximation algorithms for aligning points. Algorithmica 37, 3, 211--232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cabello, S., de Berg, M., van Dijk, S., van Kreveld, M., and Strijk, T. 2001. Schematization of road networks. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry, ACM, New York, NY, USA, SCG '01, 33--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cabello, S., de Berg, M., and van Kreveld, M. 2005. Schematization of networks. Computational Geometry 30, 3, 223--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carpendale, M., Cowperthwaite, D., and Fracchia, F. 1997. Extending distortion viewing from 2d to 3d. Computer Graphics and Applications 17, 4, 42--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. do Nascimento, H. A., and Eades, P. 2008. User hints for map labeling. Journal of Visual Languages & Computing 19, 1, 39--74. Spatial and Image-based Information Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dwyer, T., Lee, B., Fisher, D., Quinn, K., Isenberg, P., Robertson, G., and North, C. 2009. A comparison of user-generated and automatic graph layouts. Visualization and Computer Graphics, IEEE Transactions on 15, 6, 961--968. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eiglsperger, M., Fekete, S. P., and Klau, G. W. 2001. Orthogonal graph drawing. In Drawing Graphs, M. Kaufmann and D. Wagner, Eds., vol. 2025 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 121--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fekete, J.-D., and Plaisant, C. 1999. Excentric labeling: Dynamic neighborhood labeling for data visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI '99, 512--519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fink, M., Haverkort, H., Nllenburg, M., Roberts, M., Schuhmann, J., and Wolff, A. 2013. Drawing metro maps using bézier curves. In Graph Drawing, W. Didimo and M. Patrignani, Eds., vol. 7704 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 463--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Garland, K., and Beck, H. C. 1994. Mr Beck's Underground Map. Capital Transport.Google ScholarGoogle Scholar
  15. Hadlak, S., Schulz, H.-J., and Schumann, H. 2011. In situ exploration of large dynamic networks. IEEE Transactions on Visualization and Computer Graphics 17, 12, 2334--2343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Haunert, J.-H., and Sering, L. 2011. Drawing road networks with focus regions. IEEE Transactions on Visualization and Computer Graphics 17, 12, 2555--2562. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hong, S.-H., Merrick, D., and Nascimento, H. 2005. The metro map layout problem. In Graph Drawing, J. Pach, Ed., vol. 3383 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 482--491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hong, S.-H., Merrick, D., and do Nascimento, H. A. 2006. Automatic visualisation of metro maps. Journal of Visual Languages & Computing 17, 3, 203--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Imhof, E. 1975. Positioning names on maps. The American Cartographer 2, 2, 128--144.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kaufmann, M., and Wagner, D. 2001. Drawing Graphs: Methods and Models, vol. 2025. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Klump, R., Schooley, D., and Overbye, T. 2002. An advanced visualization platform for real-time power system operations. In Proc. of the 14th Power Systems Computation Conference.Google ScholarGoogle Scholar
  22. May, T., Steiger, M., Davey, J., and Kohlhammer, J. 2012. Using signposts for navigation in large graphs. Computer Graphics Forum 31, 3pt2, 985--994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Merrick, D., and Gudmundsson, J. 2007. Path simplification for metro map layout. In Graph Drawing, M. Kaufmann and D. Wagner, Eds., vol. 4372 of Lecture Notes in Computer Science. Springer, Heidelberg, 258--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mittelstädt, S., Spretke, D., Sacha, D., Keim, D. A., Heyder, B., and Kopp, J. 2013. Visual analytics for critical infrastructures. In Security in Critical Infrastructures Today, Proc. of Int. ETG-Congress; Symposium 1, 1--8.Google ScholarGoogle Scholar
  25. Morrison, A. 1996. Public transport maps in western european cities. The Cartographic Journal 33, 2, 93--110.Google ScholarGoogle ScholarCross RefCross Ref
  26. Nesbitt, K. 2004. Getting to more abstract places using the metro map metaphor. In Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on, 488--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Neumayer, R., Mayer, R., Pölzlbauer, G., and Rauber, A. 2007. The metro visualisation of component planes for self-organising maps. In International Joint Conference on Neural Networks, 2788--2793.Google ScholarGoogle Scholar
  28. Nöllenburg, M., and Wolff, A. 2006. A mixed-integer program for drawing high-quality metro maps. In Graph Drawing, P. Healy and N. Nikolov, Eds., vol. 3843 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 321--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nöllenburg, M., and Wolff, A. 2011. Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Transactions on Vis. and CG. 17, 5, 626--641. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nöllenburg, M. 2005. Automated drawing of metro maps. Master's thesis, Universität Karlsruhe, Fakultät für Informatik.Google ScholarGoogle Scholar
  31. Ovenden, M. 2005. Metro maps of the world. Capital Transport.Google ScholarGoogle Scholar
  32. Overbye, T. J., Weber, J. D., and Laufenberg, M. 1999. Visualization of flows and transfer capability in electric networks. Proceedings of the 13th Power System Computation Conference 51 (June), 420--426.Google ScholarGoogle Scholar
  33. Overbye, T., Meliopoulos, A., Wiegmann, D., and Cokkinides, G. 2005. Visualization of power systems and components. Tech. rep., Power Systems Engineering Research Center(PSERC).Google ScholarGoogle Scholar
  34. Reilly, D. F., and Inkpen, K. M. 2004. Map morphing: Making sense of incongruent maps. In Proceedings of Graphics Interface 2004, Canadian Human-Computer Communications Society, 231--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Reilly, D. F., and Inkpen, K. M. 2007. White rooms and morphing don't mix: Setting and the evaluation of visualization techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI '07, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Roberts, M. J., Newton, E. J., Lagattolla, F. D., Hughes, S., and Hasler, M. C. 2013. Objective versus subjective measures of paris metro map usability: Investigating traditional octolinear versus all-curves schematics. International Journal of Human-Computer Studies 71, 3, 363--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Roberts, M. J. 2012. Underground maps unravelled: Explorations in information design. Maxwell J. Roberts.Google ScholarGoogle Scholar
  38. Shahaf, D., Guestrin, C., and Horvitz, E. 2012. Metro maps of science. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD '12, 1122--1130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stott, J. M., and Rodgers, P. 2005. Automatic metro map design techniques. In Proceedings of the 22nd International Cartographic Conference.Google ScholarGoogle Scholar
  40. Stott, J., Rodgers, P., Martínez-Ovando, J., and Walker, S. 2011. Automatic metro map layout using multicriteria optimization. IEEE Transactions on Vis. and CG. 17, 1, 101--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sun, Y., and Overbye, T. J. 2004. Visualizations for power system contingency analysis data. Power Systems, IEEE Transactions on 19, 4, 1859--1866.Google ScholarGoogle ScholarCross RefCross Ref
  42. Tamassia, R. 1987. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16, 3, 421--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tollis, I. G., Battista, G. D., Eades, P., and Tamassia, R. 1998. Graph Drawing: Algorithms for the Visualization of Graphs, vol. 1. Prentice Hall, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tufte, E. R. 1997. Visual explanations: images and quantities, evidence and narrative, vol. 107. Graphics Press Cheshire, CT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, Y.-S., and Chi, M.-T. 2011. Focus+context metro maps. IEEE Transactions on Visualization and Computer Graphics 17, 12, 2528--2535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ware, J. M., Taylor, G. E., Anand, S., and Thomas, N. 2006. Automated production of schematic maps for mobile applications. Transactions in GIS 10, 1, 25--42.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wolff, A. 2007. Drawing subway maps: A survey. Informatik - Forschung und Entwicklung 22, 1, 23--44.Google ScholarGoogle ScholarCross RefCross Ref
  48. Wong, P. C., Schneider, K., Mackey, P., Foote, H., Chin, G., Guttromson, R., and Thomas, J. 2009. A novel visualization technique for electric power grid analytics. Visualization and Computer Graphics, IEEE Transactions on 15, 3, 410--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wu, H.-Y., Takahashi, S., Hirono, D., Arikawa, M., Lin, C.-C., and Yen, H.-C. 2013. Spatially efficient design of annotated metro maps. CG. Forum 32, 3pt3, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A survey of direction-preserving layout strategies

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Other conferences
                  SCCG '14: Proceedings of the 30th Spring Conference on Computer Graphics
                  May 2014
                  105 pages
                  ISBN:9781450330701
                  DOI:10.1145/2643188

                  Copyright © 2014 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 28 May 2014

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate42of81submissions,52%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader