skip to main content
10.1145/2632048.2632054acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones

Published:13 September 2014Publication History

ABSTRACT

Much of the stress and strain of student life remains hidden. The StudentLife continuous sensing app assesses the day-to-day and week-by-week impact of workload on stress, sleep, activity, mood, sociability, mental well-being and academic performance of a single class of 48 students across a 10 week term at Dartmouth College using Android phones. Results from the StudentLife study show a number of significant correlations between the automatic objective sensor data from smartphones and mental health and educational outcomes of the student body. We also identify a Dartmouth term lifecycle in the data that shows students start the term with high positive affect and conversation levels, low stress, and healthy sleep and daily activity patterns. As the term progresses and the workload increases, stress appreciably rises while positive affect, sleep, conversation and activity drops off. The StudentLife dataset is publicly available on the web.

Skip Supplemental Material Section

Supplemental Material

p3-wang.mov

mov

86.5 MB

References

  1. CS65 Smartphone Programming. http://www.cs.dartmouth.edu/~campbell/cs65/cs65.html.Google ScholarGoogle Scholar
  2. Depression. http://www.nimh.nih.gov/health/topics/depression/index.shtml.Google ScholarGoogle Scholar
  3. funf-open-sensing-framework. https://code.google.com/p/funf-open-sensing-framework/.Google ScholarGoogle Scholar
  4. PACO. https://code.google.com/p/paco/.Google ScholarGoogle Scholar
  5. StudentLife Dataset 2014. http://studentlife.cs.dartmouth.edu/.Google ScholarGoogle Scholar
  6. SurveyMonkey. https://www.surveymonkey.com/.Google ScholarGoogle Scholar
  7. N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing, 7(6):643--659, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. M. Aldwin. Stress, coping, and development: An integrative perspective. Guilford Press, 2007.Google ScholarGoogle Scholar
  9. S. Bang, M. Kim, S.-K. Song, and S.-J. Park. Toward real time detection of the basic living activity in home using a wearable sensor and smart home sensors. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages 5200--5203. IEEE, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. E. Bardram, M. Frost, K. Szántó, and G. Marcu. The monarca self-assessment system: a persuasive personal monitoring system for bipolar patients. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pages 21--30. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. J. Bergman, D. R. Bassett Jr, and D. A. Klein. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. Journal of physical activity & health, 5, 2008.Google ScholarGoogle Scholar
  12. D. M. Bravata, C. Smith-Spangler, V. Sundaram, A. L. Gienger, N. Lin, R. Lewis, C. D. Stave, I. Olkin, and J. R. Sirard. Using pedometers to increase physical activity and improve health: a systematic review. Jama, 298(19):2296--2304, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. N. Burns, M. Begale, J. Duffecy, D. Gergle, C. J. Karr, E. Giangrande, and D. C. Mohr. Harnessing context sensing to develop a mobile intervention for depression. Journal of medical Internet research, 13(3), 2011.Google ScholarGoogle Scholar
  14. Z. Chen, M. Lin, F. Chen, N. D. Lane, G. Cardone, R. Wang, T. Li, Y. Chen, T. Choudhury, and A. T. Campbell. Unobtrusive sleep monitoring using smartphones. In Proc. of PervasiveHealth, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, et al. The mobile sensing platform: An embedded activity recognition system. Pervasive Computing, IEEE, 7(2):32--41, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Cohen. Statistical power analysis for the behavioral sciencies. Routledge, 1988.Google ScholarGoogle Scholar
  17. S. Cohen, T. Kamarck, and R. Mermelstein. A global measure of perceived stress. Journal of health and social behavior, pages 385--396, 1983.Google ScholarGoogle Scholar
  18. R. Cowie and E. Douglas-Cowie. Automatic statistical analysis of the signal and prosodic signs of emotion in speech. In Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on, volume 3, pages 1989--1992. IEEE, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  19. E. Diener, D. Wirtz, W. Tov, C. Kim-Prieto, D.-w. Choi, S. Oishi, and R. Biswas-Diener. New well-being measures: Short scales to assess flourishing and positive and negative feelings. Social Indicators Research, 97(2):143--156, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and ubiquitous computing, 10(4):255--268, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. J. France, R. G. Shiavi, S. Silverman, M. Silverman, and D. M. Wilkes. Acoustical properties of speech as indicators of depression and suicidal risk. Biomedical Engineering, IEEE Transactions on, 47(7):829--837, 2000.Google ScholarGoogle Scholar
  22. M. Frost, A. Doryab, M. Faurholt-Jepsen, L. V. Kessing, and J. E. Bardram. Supporting disease insight through data analysis: refinements of the monarca self-assessment system. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 133--142. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Hawthorne. Measuring social isolation in older adults: development and initial validation of the friendship scale. Social Indicators Research, 77(3):521--548, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Kasckow, S. Zickmund, A. Rotondi, A. Mrkva, J. Gurklis, M. Chinman, L. Fox, M. Loganathan, B. Hanusa, and G. Haas. Development of telehealth dialogues for monitoring suicidal patients with schizophrenia: Consumer feedback. Community mental health journal, pages 1--4, 2013.Google ScholarGoogle Scholar
  25. L. J. Kirmayer, J. M. Robbins, M. Dworkind, and M. J. Yaffe. Somatization and the recognition of depression and anxiety in primary care. The American journal of psychiatry, 1993.Google ScholarGoogle Scholar
  26. K. Kroenke, R. L. Spitzer, and J. B. Williams. The phq-9. Journal of general internal medicine, 16(9):606--613, 2001.Google ScholarGoogle Scholar
  27. N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choudhury, and A. Campbell. Bewell: A smartphone application to monitor, model and promote wellbeing. In Proc. of PervasiveHealth, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. Campbell, D. Gatica-Perez, and T. Choudhury. Stresssense: Detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 351--360. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. The jigsaw continuous sensing engine for mobile phone applications. In Proc. of SenSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Madan, M. Cebrian, D. Lazer, and A. Pentland. Social sensing for epidemiological behavior change. In Proceedings of the 12th ACM international conference on Ubiquitous computing, pages 291--300. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application. In Proc. of SenSys, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. P. Pollak, P. Adams, and G. Gay. PAM: a photographic affect meter for frequent, in situ measurement of affect. In Proc. of SIGCHI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Puiatti, S. Mudda, S. Giordano, and O. Mayora. Smartphone-centred wearable sensors network for monitoring patients with bipolar disorder. In Proc. of EMBC, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Rabbi, S. Ali, T. Choudhury, and E. Berke. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In Proc. of UbiComp, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth, and A. Aucinas. Emotionsense: a mobile phones based adaptive platform for experimental social psychology research. In Proceedings of the 12th ACM international conference on Ubiquitous computing, pages 281--290, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. W. Russell. UCLA loneliness scale (version 3): Reliability, validity, and factor structure. Journal of personality assessment, 66(1):20--40, 1996.Google ScholarGoogle Scholar
  37. S. Shiffman, A. A. Stone, and M. R. Hufford. Ecological momentary assessment. Annu. Rev. Clin. Psychol., 4:1--32, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  38. S. E. Taylor, W. T. Welch, H. S. Kim, and D. K. Sherman. Cultural differences in the impact of social support on psychological and biological stress responses. Psychological Science, 18(9):831--837, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  39. M. T. Trockel, M. D. Barnes, and D. L. Egget. Health-related variables and academic performance among first-year college students: Implications for sleep and other behaviors. Journal of American college health, 49(3):125--131, 2000.Google ScholarGoogle Scholar
  40. C. Tudor-Locke, S. B. Sisson, T. Collova, S. M. Lee, and P. D. Swan. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Canadian Journal of Applied Physiology, 30(6):666--676, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  41. J.-i. Watanabe, S. Matsuda, and K. Yano. Using wearable sensor badges to improve scholastic performance. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pages 139--142. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J.-I. Watanabe, K. Yano, and S. Matsuda. Relationship between physical behaviors of students and their scholastic performance. In Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), pages 170--177. IEEE, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Watson, L. A. Clark, and A. Tellegen. Development and validation of brief measures of positive and negative affect: the panas scales. Journal of personality and social psychology, 54(6):1063, 1988.Google ScholarGoogle Scholar

Index Terms

  1. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UbiComp '14: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing
          September 2014
          973 pages
          ISBN:9781450329682
          DOI:10.1145/2632048

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 September 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate764of2,912submissions,26%

          Upcoming Conference

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader