skip to main content
research-article

FireFly: a reconfigurable wireless data center fabric using free-space optics

Published:17 August 2014Publication History
Skip Abstract Section

Abstract

Conventional static datacenter (DC) network designs offer extreme cost vs. performance tradeoffs---simple leaf-spine networks are cost-effective but oversubscribed, while "fat tree"-like solutions offer good worst-case performance but are expensive. Recent results make a promising case for augmenting an oversubscribed network with reconfigurable inter-rack wireless or optical links. Inspired by the promise of reconfigurability, this paper presents FireFly, an inter-rack network solution that pushes DC network design to the extreme on three key fronts: (1) all links are reconfigurable; (2) all links are wireless; and (3) non top-of-rack switches are eliminated altogether. This vision, if realized, can offer significant benefits in terms of increased flexibility, reduced equipment cost, and minimal cabling complexity. In order to achieve this vision, we need to look beyond traditional RF wireless solutions due to their interference footprint which limits range and data rates. Thus, we make the case for using free-space optics (FSO). We demonstrate the viability of this architecture by (a) building a proof-of-concept prototype of a steerable small form factor FSO device using commodity components and (b) developing practical heuristics to address algorithmic and system-level challenges in network design and management.

References

  1. A Simpler Data Center Fabric Emerges . http://tinyurl.com/kaxpotw.Google ScholarGoogle Scholar
  2. Galvo mirrors. http://www.thorlabs.us/NewGroupPage9.cfm?ObjectGroup_ID=3770.Google ScholarGoogle Scholar
  3. htsim simulator. http://nrg.cs.ucl.ac.uk/mptcp/implementation.html.Google ScholarGoogle Scholar
  4. Kent optronics, inc. http://kentoptronics.com/switchable.html.Google ScholarGoogle Scholar
  5. Lightpointe flightstrata g optical gigabit link. http://tinyurl.com/k86o2vh.Google ScholarGoogle Scholar
  6. Mems scanning mirror. http://www.lemoptix.com/technology/mems-scanning-mirrors.Google ScholarGoogle Scholar
  7. Mininet. http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet.Google ScholarGoogle Scholar
  8. OpenGear out of band management. http://tinyurl.com/n773hg3.Google ScholarGoogle Scholar
  9. Single-fiber sfp. http://www.championone.net/products/transceivers/sfp/single-fiber-single-wavelength/.Google ScholarGoogle Scholar
  10. Xinyu laser products. http://www.xinyulaser.com/index.asp.Google ScholarGoogle Scholar
  11. 10GBASE-T vs. GbE cost comparison. Emulex white paper, 2012. Available at http://www.emulex.com/artifacts/cdc1a1d3-5d2d-4ac5-9ed8-5cc4a72bd561/elx_sb_all_10gbaset_cost_comparison.pdf.Google ScholarGoogle Scholar
  12. M. Al-Fares et al. Hedera: Dynamic flow scheduling for data center networks. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In ACM SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Chen et al. OSA: An optical switching architecture for data center networks with unprecedented flexibility. In NSDI, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Ciaramella et al. 1.28-Tb/s (32 x 40 Gb/s) free-space optical WDM transmission system. IEEE Photonics Technology Letters, 21(16), 2009.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32, 1953.Google ScholarGoogle Scholar
  17. A. Curtis et al. DevoFlow: Scaling flow management for high-performance networks. In ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: Using heterogeneity to reduce the cost of data center network upgrades. In CoNEXT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. L. Davidson et al. Data center with free-space optical communications. US Patent 8,301,028, 2012.Google ScholarGoogle Scholar
  20. N. Farrington et al. Helios: A hybrid electrical/optical switch architecture for modular data centers. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Combinatorica, 11(4), 1991.Google ScholarGoogle Scholar
  22. S. Gollakota, S. D. Perli, and D. Katabi. Interference alignment and cancellation. In ACM SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Greenberg et al. VL2: A scalable and flexible data center network. In ACM SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Guo et al. BCube: A high performance, server-centric network architecture for modular data centers. In ACM SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Gupta and J. Konemann. Approximation algorithms for network design: A survey. Surveys in Operations Research and Management Science, 16, 2011.Google ScholarGoogle Scholar
  26. D. Halperin et al. Augmenting data center networks with multi-gigabit wireless links. In ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. Hamedazimi et al. FireFly: A reconfigurable wireless data center fabric using free-space optics (full version). http://www.cs.stonybrook.edu/~hgupta/ps/firefly-full.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Hamedazimi, H. Gupta, V. Sekar, and S. Das. Patch panels in the sky: A case for free-space optics in data centers. In ACM HotNets, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Heller et al. ElasticTree: Saving energy in data center networks. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C.-Y. Hong et al. Achieving high utilization with software-driven WAN. In ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Kedar and S. Arnon. Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Communications Magazine, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell Systems Technical Journal, 49(2), 1970.Google ScholarGoogle ScholarCross RefCross Ref
  33. L. Li. CEO, KentOptronics. Personal communication.Google ScholarGoogle Scholar
  34. R. Mahajan and R. Wattenhofer. On consistent updates in software defined networks (extended version). In ACM HotNets, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. F. McManamon et al. A review of phased array steering for narrow-band electrooptical systems. Proceedings of the IEEE, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  36. B. Monien and R. Preis. Upper bounds on the bisection width of 3- and 4-regular graphs. Journal of Discrete Algorithms, 4, 2006.Google ScholarGoogle Scholar
  37. J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming the flying cable monster: A topology design and optimization framework for data-center networks. In USENIX ATC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. McKeown et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM CCR, 38(2), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Orfanidis. Electromagnetic waves and antennas; Chapter 15, 19. http://www.ece.rutgers.edu/~orfanidi/ewa/.Google ScholarGoogle Scholar
  40. L. Popa et al. A cost comparison of datacenter network architectures. In CoNEXT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. G. Porter et al. Integrating microsecond circuit switching into the data center. In ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4), 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Reitblatt et al. Abstractions for network update. In ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Shin, E. G. Sirer, H. Weatherspoon, and D. Kirovski. On the feasibility of completely wireless datacenters. In ANCS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data centers randomly. In NSDI, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. O. Svelto. Principles of Lasers. Plenum Press, New York, Fourth edition, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Turner. Effects of data center vibration on compute system performance. In SustainIT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. Wang et al. c-Through: Part-time optics in data centers. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing gone wild. In Hot-ICE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Y. Yang, S. Goswami, and C. Hansen. 10GBASE-T ecosystem is ready for broad adoption. Commscope/Intel/Cisco White Paper, 2012. Available at http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/COM_WP_10GBASE_T_Ecosystem_US4.pdf.Google ScholarGoogle Scholar
  51. K. Yoshida, K. Tanaka, T. Tsujimura, and Y. Azuma. Assisted focus adjustment for free space optics system coupling single-mode optical fibers. IEEE Trans. on Industrial Electronics, 60(11), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  52. X. Zhou et al. Mirror mirror on the ceiling: Flexible wireless links for data centers. In ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FireFly: a reconfigurable wireless data center fabric using free-space optics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 44, Issue 4
      SIGCOMM'14
      October 2014
      672 pages
      ISSN:0146-4833
      DOI:10.1145/2740070
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 August 2014

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader