skip to main content
research-article
Open Access

Geosphere: consistently turning MIMO capacity into throughput

Published:17 August 2014Publication History
Skip Abstract Section

Abstract

This paper presents the design and implementation of Geosphere, a physical- and link-layer design for access point-based MIMO wireless networks that consistently improves network throughput. To send multiple streams of data in a MIMO system, prior designs rely on a technique called zero-forcing, a way of "nulling" the interference between data streams by mathematically inverting the wireless channel matrix. In general, zero-forcing is highly effective, significantly improving throughput. But in certain physical situations, the MIMO channel matrix can become "poorly conditioned," harming performance. With these situations in mind, Geosphere uses sphere decoding, a more computationally demanding technique that can achieve higher throughput in such channels. To overcome the sphere decoder's computational complexity when sending dense wireless constellations at a high rate, Geosphere introduces search and pruning techniques that incorporate novel geometric reasoning about the wireless constellation. These techniques reduce computational complexity of 256-QAM systems by almost one order of magnitude, bringing computational demands in line with current 16- and 64-QAM systems already realized in ASIC. Geosphere thus makes the sphere decoder practical for the first time in a 4 × 4 MIMO, 256-QAM system. Results from our WARP testbed show that Geosphere achieves throughput gains over multi-user MIMO of 2× in 4 × 4 systems and 47% in 2 × 2 MIMO systems.

References

  1. Agilent Technologies. shape mimo Performance and Condition Number in LTE Test: App. Note, 2009.Google ScholarGoogle Scholar
  2. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. riptsize IEEE Trans. Inf. Theory, 48(8):2201--2214, Aug. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Artés. Efficient detection algorithms for shape mimo channels. riptsize IEEE Tr. Sig. Proc., 51(11):2808--20, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Azzam and E. Ayanoglu. Reduced complexity sphere decoding via a reordered lattice representation. riptsize IEEE Tr. Comms., 57(9):2564--69, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Barbero and J. Thompson. Fixing the complexity of the sphere decoder for shape mimo detection. riptsize IEEE Trans. on Wireless Comms., 7(6):2131--2142, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Barrenechea et al. Implementation of complex enumeration for multiuser shape mimo vector precoding. In Proc. of Eur. Sig. Proc. Conf., 2011.Google ScholarGoogle Scholar
  7. F. Borlenghi et al. A 772 Mbit/s 8.81 bit/nJ 90 nm shape cmos soft-input soft-output sphere decoder. In Proc. of riptsize IEEE Asian Solid State Circ. Conf., 2011.Google ScholarGoogle Scholar
  8. F. Borlenghi et al. A 2.78 mm2 65 nm shape cmos gigabit shape mimo iterative detection and decoding receiver. In Proc. of the ESSCIRC, pages 65--68, 2012.Google ScholarGoogle Scholar
  9. J. Boutros et al. Soft-input soft-output lattice sphere decoder for linear channels. In riptsize GLOBECOM, 2003.Google ScholarGoogle Scholar
  10. A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei. shape vlsi implementation of shape mimo detection using the sphere decoding algorithm. riptsize IEEE J. of Solid-State Circ., 40(7):1566--1577, 2005.Google ScholarGoogle Scholar
  11. A. Chan and I. Lee. A new reduced-complexity sphere decoder for multiple antenna sys. In riptsize IEEE ICC, 2002.Google ScholarGoogle Scholar
  12. C. Chen and L. Wang. On the performance of the zero-forcing receiver operating in the multiuser shape mimo system with reduced noise enhancement effect. In Proc. of riptsize IEEE Globecom, 2005.Google ScholarGoogle Scholar
  13. S. Chen, T. Zhang, and Y. Xin. Relaxed shape k-best shape mimo signal detector design and shape vlsi implementation. riptsize IEEE Trans. on shape vlsi Sys., 15(3):328--337, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Cui, S. Han, and C. Tellambura. Probability distribution based node pruning for sphere decoding. riptsize IEEE Trans. on Veh. Tech., 62(4):1586--96, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. Cui, T. Ho, and C. Tellambura. Statistical pruning for near maxiumum likelihood detection of shape mimo systems. In riptsize IEEE ICC, 2007.Google ScholarGoogle Scholar
  16. T. Cui and C. Tellambura. An efficient generalized sphere decoder for rank-deficient shape mimo systems. riptsize IEEE Comms. L., 9(5):423--5, 2005.Google ScholarGoogle Scholar
  17. M. Damen, H. El Gamal, and G. Caire. On maximum likelihood detection and the search for the closest lattice point. riptsize IEEE T. Inf. Th., 49(10):2389--402, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Damen et al. Generalized sphere decoder for asymmetrical space-time communication architecture. riptsize IEEE Elec. L., 36(2):166--67, 2000.Google ScholarGoogle Scholar
  19. P. Dayal and M. Varanasi. A fast generalized sphere decoder for optimum decoding of under-determined shape mimo systems. In Proc. of Allerton Conf., 2003.Google ScholarGoogle Scholar
  20. A. Ghasemmehdi and E. Agrell. Faster recursions in sphere decoding. riptsize IEEE T. Inf. Th., 57(6):3530--6, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Gollakota, S. Perli, and D. Katabi. Interference alignment and cancellation. In riptsize SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Gowaikar and B. Hassibi. Statistical pruning for near-maximum likelihood decoding. riptsize IEEE Tr. on Sig. Proc., 55(6):2661--75, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Gudipati and S. Katti. Strider: Automatic rate adaptation and collision handling. In riptsize SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Guo and P. Nilsson. Algorithm and implementation of the shape k-best sphere decoding for shape mimo detection. riptsize IEEE J. Sel. Areas Commun., 24(3):491--503, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Hess et al. Reduced-complexity shape mimo detector with close-to-shape ml error rate performance. In riptsize ACM Great Lakes riptsize VLSI Symp., 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Hochwald, T. Marzetta, and V. Tarokh. Multiple-antenna channel hardening and its implications for rate feedback and scheduling. riptsize IEEE Trans. on Info. Theory, 50(9), Sept. 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Hochwald, C. Peel, and A. Swindlehurst. A vector-perturbation technique for near-capacity multiantenna multiuser communication. riptsize IEEE Trans. on Comms., 53(3):537--544, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  28. B. Hochwald and S. Ten Brink. Achieving near-capacity on a multiple-antenna channel. riptsize IEEE Trans. Comms., 51(3):389--399, Mar. 2003.Google ScholarGoogle ScholarCross RefCross Ref
  29. B. Hochwald and S. Vishwanath. Space-time multiple access: Linear growth in the sum rate. In Proc. of Allerton Conf., 2002.Google ScholarGoogle Scholar
  30. J. Jaldén, L. Barbero, B. Ottersten, and J. Thompson. The error probability of the fixed-complexity sphere decoder. riptsize IEEE Tr. on Sig. Proc., 57(7):2711--20, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Kafle et al. Spatial correlation and capacity measurements for wideband shape mimo channels in indoor office environment. riptsize IEEE Trans. on Wireless Comms., 7(5):1560--1571, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Kita et al. Measurement of Demel condition number for 2x2 shape mimo-shape ofdm channels. In riptsize IEEE VTC, 2004.Google ScholarGoogle Scholar
  33. E. Kreyszig. Advanced Engineering Mathematics. Wiley & Sons, Inc., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. Li and Z. Wang. Improved shape k-best sphere decoding algorithms for shape mimo systems. In Proc. of riptsize IEEE Int. Symp. on Circuits and Sys., 2006.Google ScholarGoogle Scholar
  35. K. Lin, S. Gollakota, and D. Katabi. Random access heterogeneous shape mimo networks. In riptsize SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Maurer, G. Matz, and D. Seethaler. Low-complexity and full-diversity shape mimo detection based on condition number thresholding. In riptsize IEEE ICASSP, 2007.Google ScholarGoogle Scholar
  37. B. Mennenga and G. Fettweis. Search sequence determination for tree search based detection algorithms. In riptsize IEEE Sarnoff Symp., 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Mohaisen and K. Chang. Fixed-complexity sphere encoder for multi-user shape mimo systems. Journal of Communications and Networks, 13(1):63--69, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Mondal et al. Design and implementation of a sort-free shape k-best sphere decoder. riptsize IEEE Trans. on shape vlsi Sys., 18(10):1497--1501, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Nikitopoulos et al. Complexity-efficient enumeration techniques for soft-input, soft-output sphere decoding. riptsize IEEE Comms. L., 14(4):312--4, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. Peel et al. A vector-perturbation technique for near-capacity multiantenna multiuser communication. riptsize IEEE Trans. on Comms., 53(1):195--202, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Perry, P. Iannucci, K. Fleming, H. Balakrishnan, and D. Shah. Spinal codes. In riptsize ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Rice Univ. Wireless Open Access Research Platform (shape warp). http://warp.rice.edu/trac.Google ScholarGoogle Scholar
  44. S. Roger, A. Gonzalez, V. Almenar, and A. Vidal. Combined shape k-best sphere decoder based on the channel matrix condition number. In riptsize IEEE ISCCSP, 2008.Google ScholarGoogle Scholar
  45. K. Sayana, S. Nagaraj, and S. Gelfand. A shape mimo zero-forcing receiver with soft interference cancellation for shape bicm. In Proc. of the riptsize IEEE Workshop on Sig. Proc. Advances in Wireless Comms., 2005.Google ScholarGoogle Scholar
  46. C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Prog., 66(2):181--191, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Shabany and P. Gulak. Scalable shape vlsi architecture for shape k-best lattice decoders. In riptsize IEEE ISCAS, 2008.Google ScholarGoogle Scholar
  48. M. Shabany, K. Su, and P. Gulak. A pipelined scalable high-throughput implementation of a near-shape ml shape k-best complex lattice decoder. In riptsize IEEE ICASSP, 2008.Google ScholarGoogle Scholar
  49. W. Shen et al. Rate adaptation for 802.11 multiuser shape mimo networks. In MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B. Shim and I. Kang. Sphere decoding with a probabilistic tree pruning. riptsize IEEE Trans. on Signal Processing, 56(10):4867--4878, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. B. Shim and I. Kang. On further reduction of complexity in tree pruning based sphere search. riptsize IEEE Trans. on Comms., 58(2):417--22, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Stojnic et al. Further results on speeding up the sphere decoder. In riptsize IEEE ICASSP, 2006.Google ScholarGoogle Scholar
  53. G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 4$^\textth$ edition, 2009.Google ScholarGoogle Scholar
  54. C. Studer and H. Bölcskei. Soft-input soft-output sphere decoding. In riptsize IEEE ISIT, 2008.Google ScholarGoogle Scholar
  55. K. Su and I. Wassell. A new ordering for efficient sphere decoding. In riptsize IEEE ICC, 2005.Google ScholarGoogle Scholar
  56. K. Tan et al. shape sam: Enabling practical spatial multiple access in wireless shape lan. In MobiCom, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. H. Teague et al. Field results on shape mimo performance in shape umb systems. In riptsize IEEE VTC, 2008.Google ScholarGoogle Scholar
  58. I. Telatar. Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecomms., 10(6):585--596, Dec. 1999.Google ScholarGoogle ScholarCross RefCross Ref
  59. D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge University Press, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  60. H. Vikalo, B. Hassibi, and T. Kailath. Iterative decoding for shape mimo channels via modified sphere decoding. riptsize IEEE Trans. on Wireless Comms., 3(6):2299--2311, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Wang et al. User selection with zero-forcing beamforming achieves the asymptotically optimal sum rate. riptsize IEEE Tr. on Sig. Proc., 56(8):3713--26, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  62. M. Wenk, L. Bruderer, A. Burg, and C. Studer. Area-and throughput-optimized shape vlsi architecture of sphere decoding. In riptsize EEE/IFIP VLSI-SOC, 2010.Google ScholarGoogle Scholar
  63. M. Wenk et al. shape k-best shape mimo detection shape vlsi architectures achieving up to 424 Mbps. In riptsize ISCC, 2006.Google ScholarGoogle Scholar
  64. M. Winter et al. A 335 Mb/s 3.9 mm$^2$ 65 nm shape cmos flexible shape mimo detection-decoding engine achieving 4G wireless data rates. In riptsize IEEE ISSCC, 2012.Google ScholarGoogle Scholar
  65. E. Witte et al. A scalable shape vlsi architecture for shape siso single tree-search sphere decoding. riptsize IEEE Trans. on Circ. and Sys., 57(9):706--710, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. K. Wong et al. A shape vlsi architecture of a shape k-best lattice decoding algorithm for shape mimo channels. In riptsize ISCC, 2002.Google ScholarGoogle Scholar
  67. Q. Yang et al. BigStation: Enabling scalable real-time signal processing in large shape mu-mimo systems. In riptsize SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. T. Yoo and A. Goldsmith. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. riptsize IEEE JSAC, 24(3):528--541, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. A. Zanella, M. Chiani, and M. Win. shape mmse reception and successive interference cancellation for shape mimo systems with high spectral efficiency. riptsize IEEE Trans. on Wireless Comms., 4(3):1244--1253, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. W. Zhao and G. Giannakis. Reduced complexity closest point decoding algorithms for random lattices. riptsize IEEE Trans. on Wireless Comms., 5(1):101--111, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geosphere: consistently turning MIMO capacity into throughput

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 44, Issue 4
        SIGCOMM'14
        October 2014
        672 pages
        ISSN:0146-4833
        DOI:10.1145/2740070
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 August 2014

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader