skip to main content
10.1145/2576768.2598390acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Multiple graph edit distance: simultaneous topological alignment of multiple protein-protein interaction networks with an evolutionary algorithm

Published:12 July 2014Publication History

ABSTRACT

Motivation: We address the problem of multiple protein-protein interaction (PPI) network alignment. Given a set of such networks for different species we might ask how much the network topology is conserved throughout evolution. Solving this problem will help to derive a subset of interactions that is conserved over multiple species thus forming a 'core interactome'. Methods: We model the problem as Topological Multiple one-to-one Network Alignment (TMNA), where we aim to minimize the total Graph Edit Distance (GED) between pairs of the input networks. Here, the GED between two graphs is the number of deleted and inserted edges that are required to make one graph isomorphic to another. By minimizing the GED we indirectly maximize the number of edges that are aligned in multiple networks simultaneously. However, computing an optimal GED value is computationally intractable. We thus propose an evolutionary algorithm and developed a software tool, GEDEVO-M, which is able to align multiple PPI networks using topological information only. We demonstrate the power of our approach by computing a maximal common subnetwork for a set of bacterial and eukaryotic PPI networks. GEDEVO-M thus provides great potential for computing the 'core interactome' of different species. Availability: http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/.

References

  1. A. E. Aladag and C. Erten. SPINAL: scalable protein interaction network alignment. Bioinformatics, 29(7):917--924, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Alkan and C. Erten. BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks. Bioinformatics, 30(4):531--539, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. Journal of molecular biology, 215(3):403--410, Oct. 1990.Google ScholarGoogle Scholar
  4. B. Aranda, H. Blankenburg, S. Kerrien, F. Brinkman, A. Ceol, E. Chautard, J. Dana, J. De Las Rivas, M. Dumousseau, E. Galeota, A. Gaulton, J. Goll, R. Hancock, R. Isserlin, R. Jimenez, J. Kerssemakers, J. Khadake, D. Lynn, M. Michaut, G. O'Kelly, K. Ono, S. Orchard, C. Prieto, S. Razick, O. Rigina, L. Salwinski, M. Simonovic, S. Velankar, A. Winter, G. Wu, G. Bader, G. Cesareni, I. Donaldson, D. Eisenberg, G. Kleywegt, J. Overington, S. Ricard-Blum, M. Tyers, M. Albrecht, and H. Hermjakob. PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 8(7):528--529--, 2011.Google ScholarGoogle Scholar
  5. L. Chindelevitch, C.-Y. Ma, C.-S. Liao, and B. Berger. Optimizing a global alignment of protein interaction networks. Bioinformatics, 29(21):2765--2773, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y.-P. Deniélou, F. Boyer, A. Viari, and M.-F. Sagot. Multiple alignment of biological networks: A flexible approach. In CPM, pages 263--273, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. El-Kebir, J. Heringa, and G. Klau. Lagrangian relaxation applied to sparse global network alignment. In M. Loog, L. Wessels, M. Reinders, and D. Ridder, editors, Pattern Recognition in Bioinformatics, volume 7036 of Lecture Notes in Computer Science, pages 225--236. Springer Berlin Heidelberg, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Flannick, A. F. Novak, C. B. Do, B. S. Srinivasan, and S. Batzoglou. Automatic parameter learning for multiple local network alignment. Journal of Computational Biology, 16(8):1001--1022, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Hu, B. Kehr, and K. Reinert. NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks. Bioinformatics, 30(4):540--548, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Ibragimov, M. Malek, J. Guo, and J. Baumbach. GEDEVO: an evolutionary graph edit distance algorithm for biological network alignment. In GCB, pages 68--79, 2013.Google ScholarGoogle Scholar
  11. R. Ibragimov, J. Martens, J. Guo, and J. Baumbach. NABEECO: biological network alignment with bee colony optimization algorithm. In GECCO (Companion), pages 43--44, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. A. D. Jong. Evolutionary computation - a unified approach. MIT Press, 2006.Google ScholarGoogle Scholar
  13. M. Kalaev, V. Bafna, and R. Sharan. Fast and accurate alignment of multiple protein networks. Journal of Computational Biology, 16(8):989--999, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Koyutürk, Y. Kim, S. Subramaniam, W. Szpankowski, and A. Grama. Detecting conserved interaction patterns in biological networks. Journal of Computational Biology, 13(7):1299--1322, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  15. O. Kuchaiev and N. Przulj. Integrative Network Alignment Reveals Large Regions of Global Network Similarity in Yeast and Human. Bioinformatics, 27(10):1390--1396, Mar. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. Isorankn: spectral methods for global alignment of multiple protein networks. Bioinformatics, 25(12), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Mohammadi and A. Grama. Biological network alignment. In M. Koyutark, S. Subramaniam, and A. Grama, editors, Functional Coherence of Molecular Networks in Bioinformatics, pages 97--136. Springer New York, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. A. Mueller, M. Dehmer, and F. Emmert-Streib. Comparing biological networks: A survey on graph classifying techniques. In A. Prokop and B. Csukás, editors, Systems Biology, pages 43--63. Springer Netherlands, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  19. B. Neyshabur, A. Khadem, S. Hashemifar, and S. S. Arab. NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics, 29(13):1654--1662, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Parrish, J. Yu, G. Liu, J. Hines, J. Chan, B. Mangiola, H. Zhang, S. Pacifico, F. Fotouhi, V. DiRita, T. Ideker, P. Andrews, and R. Finley. A proteome-wide protein interaction map for campylobacter jejuni. Genome Biology, 8(7):R130, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Patro and C. Kingsford. Global network alignment using multiscale spectral signatures. Bioinformatics, 28(23):3105--3114, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. M. Peregrin-Alvarez, X. Xiong, C. Su, and J. Parkinson. The modular organization of protein interactions in Escherichia coli. PLoS Comput Biol, 5(10):e1000523, 10 2009.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. T. S. Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee, D. S. Somanathan, A. Sebastian, S. Rani, S. Ray, H. C. J. Kishore, S. Kanth, M. Ahmed, M. K. Kashyap, R. Mohmood, Y. L. Ramachandra, V. Krishna, A. B. Rahiman, S. Mohan, P. Ranganathan, S. Ramabadran, R. Chaerkady, and A. Pandey. Human Protein Reference Database--2009 update. Nucleic acids research, 37(Database issue):D767--D772, Jan. 2009.Google ScholarGoogle Scholar
  24. N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23(2):e177--e183, Jan. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. M. E. Sahraeian and B.-J. Yoon. SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks. PLoS ONE, 8(7):e67995, 07 2013.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. Saito, M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, S. Lotia, A. R. Pico, G. D. Bader, and T. Ideker. A travel guide to Cytoscape plugins. Nat Meth, 9(11):1069--1076, Nov. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Sato, Y. Shimoda, A. Muraki, M. Kohara, Y. Nakamura, and S. Tabata. A large-scale protein-protein interaction analysis in synechocystis sp. pcc6803. DNA Research, 14(5):207--216, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Schlicker, F. S. Domingues, J. Rahnenführer, and T. Lengauer. A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics, 7:302, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  29. Y. Shimoda, S. Shinpo, M. Kohara, Y. Nakamura, S. Tabata, and S. Sato. A large scale analysis of protein-protein interactions in the nitrogen-fixing bacterium mesorhizobium loti. DNA Research, 15(1):13--23, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  30. I. Xenarios, L. Salwınski, X. Joyce, P. Higney, S.-M. M. Kim, and D. Eisenberg. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research, 30(1):303--305, Jan. 2002.Google ScholarGoogle Scholar

Index Terms

  1. Multiple graph edit distance: simultaneous topological alignment of multiple protein-protein interaction networks with an evolutionary algorithm

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation
          July 2014
          1478 pages
          ISBN:9781450326629
          DOI:10.1145/2576768

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 July 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          GECCO '14 Paper Acceptance Rate180of544submissions,33%Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader