skip to main content
research-article
Open Access

Solving Boundary Integral Problems with BEM++

Published:04 February 2015Publication History
Skip Abstract Section

Abstract

Many important partial differential equation problems in homogeneous media, such as those of acoustic or electromagnetic wave propagation, can be represented in the form of integral equations on the boundary of the domain of interest. In order to solve such problems, the boundary element method (BEM) can be applied. The advantage compared to domain-discretisation-based methods such as finite element methods is that only a discretisation of the boundary is necessary, which significantly reduces the number of unknowns. Yet, BEM formulations are much more difficult to implement than finite element methods. In this article, we present BEM++, a novel open-source library for the solution of boundary integral equations for Laplace, Helmholtz and Maxwell problems in three space dimensions. BEM++ is a C++ library with Python bindings for all important features, making it possible to integrate the library into other C++ projects or to use it directly via Python scripts. The internal structure and design decisions for BEM++ are discussed. Several examples are presented to demonstrate the performance of the library for larger problems.

References

  1. F. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen. 2008. A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antenn. Propagat. 56, 8, 2398--2412.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. A. Bartlett. 2007. Thyra linear operators and vectors. Tech. Rep. SAND2007-5984. Sandia National Laboratories, Albuquerque, NM.Google ScholarGoogle Scholar
  3. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. 2008a. A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82, 2--3, 121--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. 2008b. A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82, 2--3, 103--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Beazley. 2003. Automated scientific software scripting with SWIG. Future Gen. Comput. Syst. 19, 5, 599--609. (Tools for Program Development and Analysis. Best papers from two Technical Sessions, at ICCS2001, San Francisco, CA, USA, and ICCS2002, Amsterdam, The Netherlands.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Bebendorf. 2008. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in computational Science and Engineering, vol. 63, Springer, Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bebendorf. 2012. Another software library on hierarchical matrices for elliptic differential equations (AHMED). http://bebendorf.ins.uni-bonn.de/AHMED.html.Google ScholarGoogle Scholar
  8. T. Betcke, S. Arridge, J. Phillips, M. Schweiger, and W. Śmigaj. 2013. Solution of electromagnetic problems with BEM++. In Oberwolfach Report, Vol. 03/2013.Google ScholarGoogle Scholar
  9. C. J. Bouwkamp. 1950. On Bethe's theory of diffraction by small holes. Philips Res. Rep. 5, 321.Google ScholarGoogle Scholar
  10. A. Buffa and R. Hiptmair. 2003. Galerkin boundary element methods for electromagnetic scattering. In Topics in Computational Wave Propagation, Springer, 83--124.Google ScholarGoogle Scholar
  11. A. J. Burton and G. F. Miller. 1971. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. R. Soc. London Proc. Ser. A 323, 201--210.Google ScholarGoogle ScholarCross RefCross Ref
  12. H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. 2006. A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comp. Phys. 216, 1, 300--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Chernov and C. Schwab. 2012. Exponential convergence of Gauss--Jacobi quadratures for singular integrals over simplices in arbitrary dimension. SIAM J. Numer. Anal. 50, 3, 1433--1455.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Chernov, T. von Petersdorff, and C. Schwab. 2011. Exponential convergence of hp quadrature for integral operators with Gevrey kernels. ESAIM: Math. Model. Numer. Analy. 45, 3, 387--422.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. L. Colton and R. Kress. 2013. Inverse Acoustic and Electromagnetic Scattering Theory. Springer.Google ScholarGoogle Scholar
  16. D. A. Dunavant. 1985. High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Num. Meth. Eng. 21, 6, 1129--1148.Google ScholarGoogle ScholarCross RefCross Ref
  17. DUNE. 2012. Distributed and Unified Numerics Environment (DUNE). http://www.dune-project.org.Google ScholarGoogle Scholar
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. 1998. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667--669.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Estrada, P. Candelas, A. Uris, F. Belmar, F. J. García de Abajo, and F. Meseguer. 2008. Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101, 8, 084302.Google ScholarGoogle ScholarCross RefCross Ref
  20. F. J. García de Abajo. 2007. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267--1290.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Geuzaine and J.-F. Remacle. 2009. GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Num. Meth. Engng 79, 11, 1309--1331.Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Geuzaine and J.-F. Remacle. 2012. GMSH. http://geuz.org/gmsh.Google ScholarGoogle Scholar
  23. C. Gräser and O. Sander. 2012. Dune-FoamGrid. http://users.dune-project.org/projects/dune-foamgrid.Google ScholarGoogle Scholar
  24. D. J. Griffiths. 1998. Introduction to Electrodynamics 3rd Ed. Benjamin Cummings.Google ScholarGoogle Scholar
  25. H. Harbrecht and R. Schneider. 2006. Wavelet Galerkin schemes for boundary integral equations—Implementation and quadrature. SIAM J. Sci. Comput. 27, 4, 1347--1370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. F. Harrington and J. L. Harrington. 1996. Field Computation by Moment Methods. Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. 2005. An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 3, 397--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Hiptmair and L. Kielhorn. 2012. BETL — A generic boundary element template library. Tech. Rep. 2012-36. Seminar for Applied Mathematics, ETH Zürich.Google ScholarGoogle Scholar
  29. Intel. 2012. Intel Threading Building Blocks. http://threadingbuildingblocks.org.Google ScholarGoogle Scholar
  30. L. Kielhorn. 2012. Boundary Element Template Library (BETL). http://www.sam.math.ethz.ch/betl.Google ScholarGoogle Scholar
  31. Kitware. 2012a. Paraview. http://www.paraview.org.Google ScholarGoogle Scholar
  32. Kitware. 2012b. Visualizaton Toolkit (VTK). http://www.vtk.org.Google ScholarGoogle Scholar
  33. R. Kleinman and P. Martin. 1988. On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48, 2, 307--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Kress. 1985. Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quart. J. Mech. Appl. Math. 38, 2, 323--341.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Lenoir and N. Salles. 2012. Evaluation of 3-d singular and nearly singular integrals in Galerkin BEM for thin layers. SIAM J. Sci. Comput. 34, 6, A3057--A3078.Google ScholarGoogle ScholarCross RefCross Ref
  36. H. Liu and P. Lalanne. 2008. Microscopic theory of the extraordinary optical transmission. Nature 452, 728--731.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Maischak. 2013. MaiProgs. http://www.ifam.uni-hannover.de/~maiprogs.Google ScholarGoogle Scholar
  38. M. Messner, M. Messner, P. Urthaler, and F. Rammerstorfer. 2010. Hyperbolic and Elliptic Numerical Analysis (HyENA). http://portal.tugraz.at/portal/page/portal/Files/i2610/files/Forschung/Software/HyENA/html/index.html.Google ScholarGoogle Scholar
  39. J.-C. Nédélec. 2001. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer.Google ScholarGoogle Scholar
  40. G. Of. 2008. An efficient algebraic multigrid preconditioner for a fast multipole boundary element method. Computing 82, 2--3, 139--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. G. Of, O. Steinbach, and W. L. Wendland. 2006. The fast multipole method for the symmetric boundary integral formulation. Ima J. Numer. Anal. 26, 2, 272--296.Google ScholarGoogle ScholarCross RefCross Ref
  42. OpenCASCADE. 2012. OpenCASCADE: Shape gallery. http://www.opencascade.org/showroom/shapegallery.Google ScholarGoogle Scholar
  43. A. G. Polimeridis and J. R. Mosig. 2010. Complete semi-analytical treatment of weakly singular integrals on planar triangles via the direct evaluation method. Intl. J. Numer. Meth. Eng. 83, 1625--1650.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. G. Polimeridis, F. Vipiana, J. R. Mosig, and D. R. Wilton. 2013. DIRECTFN: Fully numerical algorithms for high precision computation of singular integrals in Galerkin SIE methods. IEEE Trans. Anten. Propag. 61, 3112--3122.Google ScholarGoogle ScholarCross RefCross Ref
  45. P. Ramachandran. 2004--2005. An introduction to Traited VTK (TVTK). http://docs.enthought.com/mayavi/tvtk/README.html.Google ScholarGoogle Scholar
  46. P.-A. Raviart and J.-M. Thomas. 1977. A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of Finite Element Methods, Springer, 292--315.Google ScholarGoogle Scholar
  47. S. Rjasanow and O. Steinbach. 2007. The Fast Solution of Boundary Integral Equations. Springer, Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. Sanderson. 2012. Armadillo: C++ linear algebra library. http://arma.sourceforge.net.Google ScholarGoogle Scholar
  49. S. A. Sauter and C. Schwab. 2011. Boundary Element Methods. Springer Series in Computational Mathematics, 39, Springer, Berlin Heidelberg.Google ScholarGoogle Scholar
  50. K. Schmidt. 2013. Concepts -- A numerical C++ library. http://www.concepts.math.ethz.ch.Google ScholarGoogle Scholar
  51. W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. 2013. Solving boundary integral problems with BEM++. http://www.bempp.org/files/bempp-toms-preprint.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. P. Šolín. 2005. Partial Differential Equations and the Finite Element Method. Wiley.Google ScholarGoogle Scholar
  53. O. Steinbach. 2008. Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer.Google ScholarGoogle Scholar
  54. SWIG. 2012. Simplified Wrapper and Interface Generator (SWIG). http://www.swig.org.Google ScholarGoogle Scholar
  55. B. A. Szabo and I. Babuška. 1991. Finite Element Analysis. Wiley.Google ScholarGoogle Scholar
  56. Trilinos. 2012. Trilinos. http://trilinos.sandia.gov.Google ScholarGoogle Scholar
  57. I. van den Bosch. 2013. Puma-EM. http://puma-em.sourceforge.net.Google ScholarGoogle Scholar
  58. P. Wieleba and J. Sikora. 2011. “BEMLAB”—universal, open source, boundary element method library applied in micro-electro-mechanical systems. Studies Appl. Electromagn. Mech. 35, 173--182.Google ScholarGoogle Scholar

Index Terms

  1. Solving Boundary Integral Problems with BEM++

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 41, Issue 2
      January 2015
      173 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/2732672
      Issue’s Table of Contents

      Copyright © 2015 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 February 2015
      • Accepted: 1 January 2014
      • Revised: 1 September 2013
      • Received: 1 December 2012
      Published in toms Volume 41, Issue 2

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader