skip to main content
research-article
Open Access

GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming

Published:27 October 2014Publication History
Skip Abstract Section

Abstract

A general-purpose MATLAB software program called GPOPS--II is described for solving multiple-phase optimal control problems using variable-order Gaussian quadrature collocation methods. The software employs a Legendre-Gauss-Radau quadrature orthogonal collocation method where the continuous-time optimal control problem is transcribed to a large sparse nonlinear programming problem (NLP). An adaptive mesh refinement method is implemented that determines the number of mesh intervals and the degree of the approximating polynomial within each mesh interval to achieve a specified accuracy. The software can be interfaced with either quasi-Newton (first derivative) or Newton (second derivative) NLP solvers, and all derivatives required by the NLP solver are approximated using sparse finite-differencing of the optimal control problem functions. The key components of the software are described in detail and the utility of the software is demonstrated on five optimal control problems of varying complexity. The software described in this article provides researchers a useful platform upon which to solve a wide variety of complex constrained optimal control problems.

References

  1. Abramowitz, M. and Stegun, I. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Åkesson, J., Arzen, K. E., Gäfert, M., Bergdahl, T., and Tummescheit, H. 2010. Modeling and optimization with optimica and JModelica.org -- Languages and tools for solving large-scale dynamic optimization problems. Comput. Chem. Eng. 34, 11, 1737--1749.Google ScholarGoogle ScholarCross RefCross Ref
  3. Babuska, I. and Rheinboldt, W. C. 1979. Reliable error estimation and mesh adaptation for the finite element method. In Proceedings of the 2nd International Conference on Computational Methods in Nonlinear Mechanics (Univ. Texas Austin). North-Holland, Amsterdam-New York, 67--108.Google ScholarGoogle Scholar
  4. Babuska, I. and Rheinboldt, W. C. 1981. A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM Numer. J. Anal. 18, 565--589.Google ScholarGoogle ScholarCross RefCross Ref
  5. Babuska, I. and Rheinboldt, W. C. 1982. Computational error estimates and adaptive processes for some nonlinear structural problems. Comput. Meth. Appl. Mech. Eng. 34, 1--3, 895--937.Google ScholarGoogle ScholarCross RefCross Ref
  6. Babuska, I., Zienkiewicz, O. C., Gago, J., and de A. Oliveira, E. R. 1986. Accuracy Estimates and Adaptive Refinements in Finite Element Computations. John Wiley & Sons, Chichester.Google ScholarGoogle Scholar
  7. Bate, R. R., Mueller, D. D., and White, J. E. 1971. Fundamentals of Astrodynamics. Dover Publications, Mineola, New York.Google ScholarGoogle Scholar
  8. Becerra, V. M. 2009. PSOPT Optimal Control Solver User Manual. University of Reading. http://www.psopt.org.Google ScholarGoogle Scholar
  9. Benson, D. A. 2004. A Gauss pseudospectral transcription for optimal control. Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.Google ScholarGoogle Scholar
  10. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. 2006. Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control, Dynam. 29, 6, 1435--1440.Google ScholarGoogle ScholarCross RefCross Ref
  11. Betts, J. T. 1990. Sparse jacobian updates in the collocation method for optimal control problems. J. Guid. Control, Dynam. 13, 3, 409--415.Google ScholarGoogle ScholarCross RefCross Ref
  12. Betts, J. T. 1998. Survey of numerical methods for trajectory optimization. J. Guid. Control, Dynam. 21, 2, 193--207.Google ScholarGoogle ScholarCross RefCross Ref
  13. Betts, J. T. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM Press, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Betts, J. T. 2013. Sparse optimization suite (SOS). Applied Mathematical Analysis, LLC. (Based on the Algorithms Published in Betts, J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM Press, Philadelphia, PA. (2010).) Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Biegler, L. T., Ghattas, O., Heinkenschloss, M., and van Bloemen Waanders, B., Eds. 2003. Large-Scale PDE Constrained Optimization. Lecture Notes in Computational Science and Engineering, vol. 30, Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  16. Biegler, L. T. and Zavala, V. M. 2008. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33, 3, 575--582.Google ScholarGoogle ScholarCross RefCross Ref
  17. Byrd, R. H., Nocedal, J., and Waltz, R. A. 2006. Knitro: An integrated package for nonlinear optimization. In Large Scale Nonlinear Optimization, Springer Verlag, 35--59.Google ScholarGoogle Scholar
  18. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. 1988. Spectral Methods in Fluid Dynamics. Spinger-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  19. Darby, C. L., Garg, D., and Rao, A. V. 2011a. Costate estimation using multiple-interval pseudospectral methods. J. Spacecraft Rockets 48, 5, 856--866.Google ScholarGoogle ScholarCross RefCross Ref
  20. Darby, C. L., Hager, W. W., and Rao, A. V. 2011b. Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecraft Rockets 48, 3, 433--445.Google ScholarGoogle ScholarCross RefCross Ref
  21. Darby, C. L., Hager, W. W., and Rao, A. V. 2011c. An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Cont. Appl. Meth. 32, 4, 476--502.Google ScholarGoogle ScholarCross RefCross Ref
  22. Elnagar, G., Kazemi, M., and Razzaghi, M. 1995. The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Cont. 40, 10, 1793--1796.Google ScholarGoogle ScholarCross RefCross Ref
  23. Elnagar, G. and Razzaghi, M. 1998. A collocation-type method for linear quadratic optimal control problems. Optim. Control Appl. Meth. 18, 3, 227--235.Google ScholarGoogle ScholarCross RefCross Ref
  24. Falugi, P., Kerrigan, E., and van Wyk, E. 2010. Imperial College London Optimal Control Software User Guide(ICLOCS). Department of Electrical Engineering, Imperial College London, London, UK.Google ScholarGoogle Scholar
  25. Fornberg, B. 1998. A Practical Guide to Pseudospectral Methods. Cambridge University Press, New York.Google ScholarGoogle Scholar
  26. Garg, D., Hager, W. W., and Rao, A. V. 2011a. Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47, 4, 829--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Garg, D., Patterson, M., Francolin, C., Darby, C., Huntington, G., Hager, W. W., and Rao, A. V. 2011b. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Computat. Optim. Appl. 49, 2, 335--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T. 2010. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46, 11, 1843--1851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gill, P. E., Murray, W., and Saunders, M. A. 2002. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review 47, 1, 99--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Gill, P. E., Murray, W., and Wright, M. H. 1981. Practical Optimization. Academic Press, London.Google ScholarGoogle Scholar
  31. Goh, C. J. and Teo, K. L. 1988. Control parameterization: A unified approach to optimal control problems with general constraints. Automatica 24, 1, 3--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Gong, Q., Fahroo, F., and Ross, I. M. 2008a. Spectral algorithm for pseudospectral methods in optimal control. J. Guidance, Control Dynam. 31, 3, 460--471.Google ScholarGoogle ScholarCross RefCross Ref
  33. Gong, Q., Ross, I. M., Kang, W., and Fahroo, F. 2008b. Connections between the covector mapping theorem and convergence of pseudospectral methods. Computat. Optim. Appl. 41, 3, 307--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Houska, B., Ferreau, H. J., and Diehl, M. 2011. ACADO toolkit -- an open-source framework for automatic control and dynamic optimization. Optim. Control Appl. Meth. 32, 3, 298--312.Google ScholarGoogle ScholarCross RefCross Ref
  35. Huntington, G. T., Benson, D. A., and Rao, A. V. 2007. Optimal configuration of tetrahedral spacecraft formations. J. Astronaut. Sci. 55, 2, 141--169.Google ScholarGoogle ScholarCross RefCross Ref
  36. Huntington, G. T. and Rao, A. V. 2008. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. J. Guid. Control, Dynam. 31, 3, 689--698.Google ScholarGoogle ScholarCross RefCross Ref
  37. Jain, D. and Tsiotras, P. 2008. Trajectory optimization using multiresolution techniques. J. Guid. Control, Dynam. 31, 5, 1424--1436.Google ScholarGoogle ScholarCross RefCross Ref
  38. Jansch, C., Well, K. H., and Schnepper, K. 1994. GESOP - Eine Software Umgebung Zur Simulation Und Optimierung. Proceedings des SFB.Google ScholarGoogle Scholar
  39. Kameswaran, S. and Biegler, L. T. 2008. Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Computat. Optim. Appls. 41, 1, 81--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Leineweber, D. B. 1998. Efficient reduced SQP methods for the optimization of chemical processes described by large space DAE models. Ph.D. thesis, Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR).Google ScholarGoogle Scholar
  41. MUMPS. 2011. Multifrontal Massively Parallel Solver (MUMPS 4.10.0) User’s guide.Google ScholarGoogle Scholar
  42. Patterson, M. A. and Rao, A. V. 2012. Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems. J. Spacecraft Rockets 49, 2, 364--377.Google ScholarGoogle ScholarCross RefCross Ref
  43. Patterson, M. A., Rao, A. V., and Hager, W. W. 2014. A ph mesh refinement method for optimal control. Optim. Contr. Appl. Methods. DOI 10.1002/oca2114.Google ScholarGoogle Scholar
  44. Pietz, J. A. 2003. Pseudospectral collocation methods for the direct transcription of optimal control problems. M.S. thesis, Rice University, Houston, TX.Google ScholarGoogle Scholar
  45. Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I., and Huntington, G. T. 2010. Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans. Math. Softw. 37, 2, 22:1--22:39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Rao, A. V. and Mease, K. D. 2000. Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optim. Control Appl. Methods 21, 1, 1--19.Google ScholarGoogle ScholarCross RefCross Ref
  47. Trefethen, L. N. 2000. Spectral Methods Using MATLAB. SIAM Press, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vlases, W. G., Paris, S. W., Lajoie, R. M., Martens, M. J., and Hargraves, C. R. 1990. Optimal trajectories by implicit simulation. Tech. Rep. WRDC-TR-90-3056, Boeing Aerospace and Electronics, Wright-Patterson Air Force Base, OH.Google ScholarGoogle Scholar
  49. von Stryk, O. 2000. User’s Guide for DIRCOL (Version 2.1): A Direct Collocation Method for the Numerical Solution of Optimal Control Problems. Technical University, Munich, Germany.Google ScholarGoogle Scholar
  50. Wächter, A. and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Prog. 106, 1, 25--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhao, Y. and Tsiotras, P. 2011. Density functions for mesh refinement in numerical optimal control. J. Guid. Control, Dynam. 34, 1, 271--277.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 41, Issue 1
        October 2014
        157 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/2684421
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 October 2014
        • Accepted: 1 December 2013
        • Revised: 1 September 2013
        • Received: 1 February 2013
        Published in toms Volume 41, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader