skip to main content
10.1145/2556288.2557336acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

RetroDepth: 3D silhouette sensing for high-precision input on and above physical surfaces

Authors Info & Claims
Published:26 April 2014Publication History

ABSTRACT

We present RetroDepth, a new vision-based system for accurately sensing the 3D silhouettes of hands, styluses, and other objects, as they interact on and above physical surfaces. Our setup is simple, cheap, and easily reproducible, comprising of two infrared cameras, diffuse infrared LEDs, and any off-the-shelf retro-reflective material. The retro-reflector aids image segmentation, creating a strong contrast between the surface and any object in proximity. A new highly efficient stereo matching algorithm precisely estimates the 3D contours of interacting objects and the retro-reflective surfaces. A novel pipeline enables 3D finger, hand and object tracking, as well as gesture recognition, purely using these 3D contours. We demonstrate high-precision sensing, allowing robust disambiguation between a finger or stylus touching, pressing or interacting above the surface. This allows many interactive scenarios that seamlessly mix together freehand 3D interactions with touch, pressure and stylus input. As shown, these rich modalities of input are enabled on and above any retro-reflective surface, including custom "physical widgets" fabricated by users. We compare our system with Kinect and Leap Motion, and conclude with limitations and future work.

Skip Supplemental Material Section

Supplemental Material

pn2022-file3.mp4

mp4

81.2 MB

p1377-sidebyside.mp4

mp4

232.9 MB

References

  1. 3Gear Systems Inc. http://threegear.com/, 2013.Google ScholarGoogle Scholar
  2. Agarwal, A., Izadi, S., Chandraker, M., and Blake, A. High precision multi-touch sensing on surfaces using cameras. In Tabletop'07, 197--200.Google ScholarGoogle Scholar
  3. Akaoka, E., Ginn, T., and Vertegaal, R. Displayobjects: prototyping functional physical interfaces on 3d styrofoam, paper or cardboard models. In TEI'10, ACM (2010), 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Annett, M., Grossman, T., Wigdor, D., and Fitzmaurice, G. Medusa: a proximity-aware multi-touch tabletop. In UIST'11, ACM (2011), 337--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benko, H., Jota, R., and Wilson, A. Miragetable: freehand interaction on a projected augmented reality tabletop. In CHI'12, ACM (2012), 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bleyer, M., Rhemann, C., and Rother, C. Patchmatch stereo - stereo matching with slanted support windows. In British Machine Vision Conference (2011).Google ScholarGoogle ScholarCross RefCross Ref
  7. Breiman, L. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brown, M. Z., Burschka, D., and Hager, G. D. Advances in computational stereo. PAMI 25, 8 (2003), 993--1008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davis, J. W., and Bobick, A. F. Sideshow: A silhouettebased interactive dual-screen environment. Tech. rep., MIT, 1998.Google ScholarGoogle Scholar
  10. Dippon, A., and Klinker, G. Kinecttouch: accuracy test for a very low-cost 2.5 d multitouch tracking system. In ITS'11, ACM (2011), 49--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Haptix. http://www.haptixtouch.com/, 2013.Google ScholarGoogle Scholar
  12. Haubner, N., Schwanecke, U., Dörner, R., Lehmann, S., and Luderschmidt, J. Detecting interaction above digital tabletops using a single depth camera. Machine Vision and Applications (2013), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-Mendoza, A., and Butz, A. Interactions in the air: adding further depth to interactive tabletops. In UIST'09, ACM (2009), 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. Holodesk: direct 3d interactions with a situated seethrough display. In CHI'12, ACM (2012), 2421--2430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. Bidi screen: a thin, depth-sensing lcd for 3d interaction using light fields. In TOG, vol. 28, ACM (2009), 159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Izadi, S., Agarwal, A., Criminisi, A., Winn, J., Blake, A., and Fitzgibbon, A. C-slate: a multi-touch and object recognition system for remote collaboration using horizontal surfaces. In Tabletop'07, IEEE (2007), 3--10.Google ScholarGoogle Scholar
  17. Izadi, S., Hodges, S., Butler, A., West, D., Rrustemi, A., Molloy, M., and Buxton,W. Thinsight: a thin form-factor interactive surface technology. CACM 52, 12, 90--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., and Westhues, J. Going beyond the display: a surface technology with an electronically switchable diffuser. In UIST'08, ACM (2008), 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Keskin, C., Kirac, F., Kara, Y. E., and Akarun, L. Hand Pose Estimation and Hand Shape Classification Using Multi-layered Randomized Decision Forests. In ECCV'12 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Koike, H., Sato, Y., and Kobayashi, Y. Integrating paper and digital information on enhanceddesk: a method for realtime finger tracking on an augmented desk system. TOCHI 8, 4 (2001), 307--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Krueger, M. W. Artificial reality II, vol. 10. Addison-Wesley Reading (Ma), 1991.Google ScholarGoogle Scholar
  22. Lanman, D., and Taubin, G. Build your own 3d scanner: 3d photography for beginners. In ACM SIGGRAPH 2009 Courses, ACM (2009), 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, J., Park, K. S., and Hahn, M. The 3d sensor table for bare hand tracking and posture recognition. In Advances in Multimedia Modeling. Springer, 2006, 138--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, Y., Weibel, N., and Hollan, J. Interactive space: A framework for prototyping multi-touch interaction on and above the desktop. In CHI'13, vol. 13 (2013).Google ScholarGoogle Scholar
  25. Malik, S., and Laszlo, J. Visual touchpad: a two-handed gestural input device. In ICMI'04, 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marquardt, N., Jota, R., Greenberg, S., and Jorge, J. A. The continuous interaction space: interaction techniques unifying touch and gesture on and above a digital surface. In INTERACT'11. Springer, 2011, 461--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marroquim, R., Kraus, M., and Cavalcanti, P. R. Efficient point-based rendering using image reconstruction. In SPBG (2007), 101--108.Google ScholarGoogle Scholar
  28. Matsushita, N., and Rekimoto, J. Holowall: designing a finger, hand, body, and object sensitive wall. In UIST'97, ACM (1997), 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Moeller, J., Kerne, A., and Moeller, J. Zerotouch: An optical multi-touch and free-air interaction architecture. In CH'12, ACM (2012), 2165--2174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Paradiso, J. A. Several sensor approaches that retrofit large surfaces for interactivity. In UbiComp 2002 (2002).Google ScholarGoogle Scholar
  31. Remondino, F., and Stoppa, D. Tof range-imaging cameras. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Scharstein, D., and Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In IJCV (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. Realtime Human Pose Recognition in Parts from Single Depth Images. In CVPR (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Strecha, C., and Van Gool, L. PDE-based multi-view depth estimation. In Proc. 3DIMPVT (2002), 416--425.Google ScholarGoogle ScholarCross RefCross Ref
  35. Subramanian, S., Aliakseyeu, D., and Lucero, A. Multilayer interaction for digital tables. In UIST'06, ACM (2006), 269--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Takeoka, Y., Miyaki, T., and Rekimoto, J. Z-touch: an infrastructure for 3d gesture interaction in the proximity of tabletop surfaces. In ITS'10, ACM (2010), 91--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ullmer, B., and Ishii, H. The metadesk: models and prototypes for tangible user interfaces. In UIST'97, ACM (1997), 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, R., Paris, S., and Popović, J. 6d hands: markerless hand-tracking for computer aided design. In UIST'11, ACM (2011), 549--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wellner, P. Interacting with paper on the digitaldesk. CACM 36, 7 (1993), 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wesche, G., and Seidel, H.-P. Freedrawer: a free-form sketching system on the responsive workbench. In VRST, ACM (2001), 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wilson, A. D. Playanywhere: a compact interactive tabletop projection-vision system. In UIST'05, ACM (2005), 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wilson, A. D. Robust computer vision-based detection of pinching for one and two-handed gesture input. In UIST'06, ACM (2006), 255--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wilson, A. D. Depth-sensing video cameras for 3d tangible tabletop interaction. In Tabletop'07, IEEE (2007), 201--204.Google ScholarGoogle Scholar
  44. Wilson, A. D. Using a depth camera as a touch sensor. In ITS'10, ACM (2010), 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. RetroDepth: 3D silhouette sensing for high-precision input on and above physical surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader