skip to main content
10.1145/2536146.2536150acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmedesConference Proceedingsconference-collections
research-article

Semantic to intelligent web era: building blocks, applications, and current trends

Published:28 October 2013Publication History

ABSTRACT

The Web has known a very fast evolution: going from the Web 1.0, known as Web of Documents where users are merely consumers of static information, to the more dynamic Web 2.0, known as social or collaborative Web where users produce and consume information simultaneously, and entering the more sophisticated Web 3.0, known as the Semantic Web by giving information a well-defined meaning so that it becomes more easily accessible by human users and automated processes. Fostering service intelligence and atomicity (the ability of autonomous services to interact automatically), remains one of the most upcoming challenges of the Semantic Web. This promotes the dawn of a new era: the Intelligent Web (Web 4.0), known as the Internet of Things (IoT), an extension of the Semantic Web where (physical/software) objects and services autonomously interact in a multimedia virtual environment, provided with embedded communication capabilities, common semantics and addressing schemes, promoting the concept of Digital Web Ecosystems where every where (human and software) agents collaborate, interact, compete, and evolve autonomously in order to automatically solve complex and dynamic problems. This paper briefly describes the recent evolution of the Web providing an overview of the technological breakthroughs contributing to this evolution, covering: knowledge bases and semantic data description, XML-based data representation and manipulation technologies (i.e., RDF, RDFS, OWL, and SPARQL) as well as the main challenges toward achieving the Intelligent Web: connectivity, semantic heterogeneity, collective knowledge management, collective intelligence, as well as data sustainability and evolution. We also present some of the main application domains characterizing the Intelligent (Semantic) Web, from information retrieval and content analysis, to systems status monitoring and improving business life-cycle through ubiquitous computing.

References

  1. Al Bouna B., Chbeir R., Gabillon A., and Capolsini P., A Fine-Grained Image Access Control Model. SITIS'12, 2012. pp. 603--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aleman-Meza B. et al., Scalable Semantic Analytics on Social Networks for Addressing the Problem of Conflict of Interest Detection. ACM Transaction on the Web (TWeb), 2008. 2(1): 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allan J. and H. Raghavan, Using Part-of-Speech Patterns to Reduce Query Ambiguity. Inter. ACM SIGIR Conference, 2002. pp. 307--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ambrus O. et al., Konduit VQB: a Visual Query Builder for SPARQL on the Social Semantic Desktop. Proceedings VISSW'10 Workshop, 2010.Google ScholarGoogle Scholar
  5. Anderson P., What is Web 2.0? Ideas, technologies and implications for education. JISC Technology and Standrads Watch, 2007. pp. 64.Google ScholarGoogle Scholar
  6. Antoniou G. and Van Harmelen F., Web Ontology Language: OWL. Handbook on Ontologies, 2004. pp. 67--92.Google ScholarGoogle ScholarCross RefCross Ref
  7. Apache Jena. ARQ - A SPARQL Processor for Jena. http://jena.apache.org/documentation/query/index.html {cited Jan. 2012}.Google ScholarGoogle Scholar
  8. Araújo S. et al., SERIMI - Resource Description Similarity, RDF Instance Matching and Interlinking. Inter. Semantic Web Conf.(ISWC'11), 2011.Google ScholarGoogle Scholar
  9. Armbrecht R. et al., Knowledge Management in Research And Development, Research-Technology Management, 2001. 44(4): 28--48.Google ScholarGoogle ScholarCross RefCross Ref
  10. Auer S. and Herre H., A Versioning and Evolution Framework for RDF Knowledge Bases. Perspectives of Systems Informatics, 2007. 4378: 55--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Baader F. et al., Pushing the EL Envelope. Inter. IJCAI'05 Conf., 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Barrero F. et al., Adapting Searchy to extract data using evolved wrappers. Expert Syst. Appl. 3, 2012. 9(3): 3061--3070. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bawakid A. and Oussalah M., A Semantic-based Text Classification System. IEEE Inter. Conf. on Cybernetic Intelligent Systems (CIS'10), 2010, 1--6.Google ScholarGoogle Scholar
  14. Baziz M. et al., A concept-based approach for indexing documents in IR. INFORSID 2005, 2005. pp. 89--504, Grenoble, France.Google ScholarGoogle Scholar
  15. Berendt B. & Trumper D., Semantics-based Analysis & Navigation of Heterogeneous Text Corpora: The Porpoise News and Blogs Engine. Web Mining Apps in E-comm. & E-services Studies in Compt. Intel., 2009. 172: 45--64.Google ScholarGoogle Scholar
  16. Berendt B. and Navigli R., Finding Your Way Through Blogspace: Using Semantics for Cross-Domain Blog Analysis. AAAIS, 2006. pp. 1--8.Google ScholarGoogle Scholar
  17. Berners-Lee T. et al., The Semantic Web. Scientific American, 2001. 284(5): 1:19.Google ScholarGoogle ScholarCross RefCross Ref
  18. Berners-Lee T. and Lohr S., Tim Berners-Lee Looks Back: the "//" in Web Addresses Was Unnecessary. http://tinyurl.com/bgse2cw., 2009.Google ScholarGoogle Scholar
  19. Bertails A., Herman I., and Hawke S., The Semantic Web: The Internet and Tomorow's Web. Industrial Realities (in French), 2010. pp. 80--89.Google ScholarGoogle Scholar
  20. Bizer C., Heath T., Berners-Lee T., and Hausenblas M., WWW'12 Workshop on Linked Data on the Web. CEUR Workshop 937, CEUR-WS.org, 2012.Google ScholarGoogle Scholar
  21. Bloehdorn S. and Hotho A., Text Classification by Boosting Weak Learners based on Terms and Concepts. ICDM, 2004. pp. 331--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Boley H. and Chang E., Digital Ecosystems: Principles and Semantics. Digital EcoSystems and Technologies Conf. (DEST'07), 2007, pp. 398--403.Google ScholarGoogle Scholar
  23. Bozzon A. et al., Liquid Query: Multi-Domain Exploratory Search on the Web. Proc of Inter. WWW '10 Conf., ACM NY, USA, 2010. pp. 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Bray T. et al., Extensible Markup Language (XML) 1.0 - 5th Edition. W3C recommendation, 2008; Available from: http://www.w3.org/TR/REC-xml/.Google ScholarGoogle Scholar
  25. Brickley D. and Guha R. V., RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recomm., 2004. http://www.w3.org/TR/rdf-schema/.Google ScholarGoogle Scholar
  26. Brin S. and Page L., The Anatomy of a Large Scale Hypertextual Web Search Engine. In Computer Networks and ISDN Systems, 1998. 30 (1--7): 107--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Brintrup A., R. D. C., Kwan S., Parlikad A., and Owens K., Roadmap to Self-Serving Assets in Civil Aerospace. CIRP IPS2 Conf., 2009, 323--331.Google ScholarGoogle Scholar
  28. Briscoe G. and De Wilde P., Computing of Applied Digital Ecosystems The International ACM MEDES'09 Conf., 2009. pp. 28--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Briscoe G. et al., Digital Ecosystems: Ecosystem-Oriented Architectures. Natural Computing, 2011. 10(3): 1143--1194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Carpineto C. and Romano G., A Survey of Automatic Query Expansion in Information Retrieval. ACM Computing Survey, ACM NY, 2012. 44(1): 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Carpuat M. and Andwu D., Improving Statistical Machine Translation using Word Sense Disambiguation. EMNLP-CoNLL'07, 2007. pp. 61--72.Google ScholarGoogle Scholar
  32. Chamberlin D. et al., XQuery: A Query Language for XML, http://www.w3.org/TR/2001/WD-xquery-20010215. 2001 { May 2011}.Google ScholarGoogle Scholar
  33. Champavère J., From Knowledge Representation to the Semantic Web: An Overview. pp. 14 (in French), 2010.Google ScholarGoogle Scholar
  34. Chang H. and Lui S.-C., IEPAD: Information Extraction Based on Pattern Discovery. In Proc. of Inter. WWW Conference, 2001. pp. 681--688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Chen M. et al., Data, Information and Knowledge in Visualization. IEEE Computer Graphics and Applications, 2009. 29(1): 12--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Dahlander L. et al., Online Communities and Open Innovation: Governance and Symbolic Value Creation. Industry and Innovation, 2008. 15(2): 115--123.Google ScholarGoogle Scholar
  37. Dean M. and Schreiber G., OWL Web Ontology Language Reference. W3C Recommendation, http://www.w3.org/TR/owl-ref/. 2004.Google ScholarGoogle Scholar
  38. Decker S. et al., The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing, 2000. 4(5): 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ding L. and Finin T., Boosting Semantic Web Data Access using Swoogle. Proceedings of the 20th Inter. AAAI'05 Conf., 2005. (4): pp. 1604--1605 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Feng C. H. et al., UPS: Unified Protocol Stack for Emerging Wireless Networks. Elsevier Ad Hoc Networks Special Issue on Cross-layer Design in Ad Hoc and Sensor Networks, 2013. Vol. 11, pp. 687--700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Fong T., Thorpe C., and Baur C., Collaboration, Dialogue, and Human-Robot Interaction. 10th Inter. Symp. of Robotics Research, 2001.Google ScholarGoogle Scholar
  42. Gabillon A. and Letouzey L., A View Based Access Control Model for SPARQL. NSS'10, 2010. pp. 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Gao S. et al., W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C recomm., http://www.w3.org/TR/xmlschema11-1/ 2009.Google ScholarGoogle Scholar
  44. Garcia-Castro R. and Gomez-Perez A., Interoperability Results for Semantic Web Technologies using OWL as the Interchange Language. Journal of Web Semantics (JWS), 2010. 8(4): 278--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Grammel L. and Storey M.-A. D., A Survey of Mashup Development Environments. The Smart Internet, 2010. 137--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Gruber. T., Collective knowledge systems: Where the Social Web meets the Semantic Web. Journal of Web Semantics (JWS), 2008. 6(1): 4--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Guillemin P. and Friess P., The Internet of Things: Strategic Research Agenda. CERP-IoT - Vision and Challenges for Realizing the Internet of Things, Ch. 3, pp. 41--42, 2010.Google ScholarGoogle Scholar
  48. Guo Y. et al., A Requirements Driven Framework for Benchmarking Semantic Web Knowledge Base Systems. IEEE TKDE, 2007, 19(2): 297--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Harrer A. et al., Visualizing wiki-supported knowledge building: coevolution of individual and collective knowledge. 4th Inter. Symp. on Wikis, 2008, p. 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Hartig O. et al., Executing SPARQL Queries over the Web of Linked Data. Inter. Semantic Web Conference (ISWC'09), 2009. pp. 293--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Hayes P., RDF Semantics. W3C Recommendation, http://www.w3.org/TR/rdf-mt/. 2004.Google ScholarGoogle Scholar
  52. Heath T. and Bizer C., Linked Data: Evolving the Web into a Global Data Space. Lectures on the Semantic Web: Theory and Technology, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Heflin J., Knowledge Representation on the Internet: Achieving Interoperability in a Dynamic, Distributed Environment. PhD Thesis, University of Maryland, USA., 2000. AAAI/IAAI 2000: 1074Google ScholarGoogle Scholar
  54. Heflin J., An Introduction to the OWL Web Ontology Language. http://www.cse.lehigh.edu/~heflin/IntroToOWL.pdf., 2007.Google ScholarGoogle Scholar
  55. Hoc J. M., From Human--Machine Interaction to Human--Machine Cooperation. Ergonomics, 2000. 43(7), pp. 833--43.Google ScholarGoogle Scholar
  56. Ide N. and Veronis J., Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art. Computational Linguistics, 1998. 24(1): 1--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Inagaki T., Smart Collaboration between Humans and Machines based on Mutual Understanding. Annual Reviews in Control, 2008. 32(2): 253--61.Google ScholarGoogle Scholar
  58. Ishida R., An Introduction to Multilingual Web Addresses. International/articles/idn-and-iri/, http://www.w3.org/, 2008.Google ScholarGoogle Scholar
  59. James T., Smart Factories. Engineering & Technology, 2012. 7(6): 64--67Google ScholarGoogle Scholar
  60. Jiang J. and Conrath D., Semantic Similarity based on Corpus Statistics and Lexical Taxonomy. Inter. Conf. on Research in Compt. Linguistics, 1997.Google ScholarGoogle Scholar
  61. Joo J., Adoption of Semantic Web from the perspective of technology innovation: A grounded theory approach. International Journal of Human-Computer Studies, 2011. 69(3): 139--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Kilgarriff A., Word Senses. Word Sense Disambiguation: Algorithms and Applications, 2006. pp. 29--46, Springer, New York, NY.Google ScholarGoogle Scholar
  63. Kleinberg J., Authoritative Sources in a Hyperlinked Environment. Journal of ACM, 1999. 46(5): 604--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Klyne G. and Carroll J., Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation REC-rdf-concepts-20040210, 2004. http://www.w3.org/TR/rdf-concepts/.Google ScholarGoogle Scholar
  65. Krogstie J. et al., Integrating Semantic Web Technology, Web Services, and Workflow Modeling: Achieving System and Business Interoperability. Intern. J. of Enterprise Information Systems (IJEIS), 2007. 3(1): 22--41.Google ScholarGoogle ScholarCross RefCross Ref
  66. Latré B. et al., A survey on wireless body area networks. JWS 2011, 17: 1--18 Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Lau R., Towards a Web Services and Intelligent Agents-based Negotiation System for B2B ECommerce. Electronic Commerce Research and Applications archive, 2007. 6(3): 260--273 Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Levy P., Collective Intelligence: Mankind's Emerging World in Cyberspace. Basic Books, 1999. pp. 312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Li H., Du X., and Tian X., Towards Semantic Web Services Discovery with QoS Support using Specific Ontologies 3rd SKG Conf. 2007. pp. 358--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Li Y. et al., Term Disambiguation in Natural Language Query for XML. In Proc. of Inter. FQAS Conf., 2006. LNAI 4027, pp. 133--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Liang P. et al., From collective knowledge to intelligence: pre-requirements analysis of large and complex systems. Proc. of Web2SE, 2010, 26--30, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Lianga T. et al., A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 2008. 45(3): 401--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Liu J. et al., A Multiagent Evolutionary Algorithm for Combinatorial Optimization Problems. IEEE Trans. on Systems, Man, & Cyber., 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Lorenzo G. D. et al., Data integration in mashups SIGMOD Record, 2009. 38: 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Maguitman A. et al., Algorithmic Detection of Semantic Similarity. Proceedings of the Inter. WWW Conf., 2005. pp. 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Manola F. and Miller E., Resource Description Framework (RDF) Primer: Model and Syntax Specification. W3C Recommendation, 2004. http://www.w3.org/TR/rdf-primer/.Google ScholarGoogle Scholar
  77. Marian A. et al., Adaptive Processing of Top-k Queries in XML. ICDE, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Marttila-Kontio M., Visual Data Flow Programming Languages: Challenges and Opportunities. Publications of the University of Eastern Finland, Dissertations in Forestry and Natural Sciences, 2011. N 30, pp. 101.Google ScholarGoogle Scholar
  79. McGuinness D. L. and Van Harmelen F., OWL 2 Web - Ontology Language Document Overview. W3C Proposed Edited Recommendation, 2012. http://www.w3.org/TR/owl2-overview/.Google ScholarGoogle Scholar
  80. Mihalcea R., Knowledge-based Methods for WSD. In Word Sense Disambiguation: Algorithms and Applications, 2006, 107--131, Springer.Google ScholarGoogle Scholar
  81. Miller G., WordNet: An On-Line Lexical Database. International Journal of Lexicography, 1990. 3(4).Google ScholarGoogle ScholarCross RefCross Ref
  82. Ming M. et al., A Harmony Based Adaptive Ontology Mapping Approach. In Proc. of International SWWS Conf., 2008. pp. 336--342.Google ScholarGoogle Scholar
  83. Mishra C. and Koudas N., Interactive Query Refinement. EDBT'09, 862--873. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Mrissa M. et al., Context-based Semantic Mediation in Web Service Communities. Weaving Services and People on the WWW, 2008. pp. 49--66.Google ScholarGoogle Scholar
  85. Nagarajan M. et al., Semantic Interoperability of Web Services - Challenges and Experiences. IEEE ICWS'06 Conf., 2006. pp. 373--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Navigli R. and Velardi P., Learning Domain Ontologies from Document Warehouses and Dedicated Websites. Compt. Linguistics, 2004. 30: 151--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Navigli R. and Velardi P., An Analysis of Ontology-based Query Expansion Strategies. Proc. of Inter. IJCAI'03 Conf., 2003.Google ScholarGoogle Scholar
  88. Pallis G. et al., Online Social Networks: Status and Trends. New Directions in Web Data Management, 2011. (1): 213--234.Google ScholarGoogle ScholarCross RefCross Ref
  89. Passant A. et al., Special issue on real-time and ubiquitous social semantics. Semantic Web 2012. 3(2): 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Pereira F., Technologies for Digital Multimedia Communications: An Evolution Analysis of MPEG Standards. China Comm. Journal, 2006.Google ScholarGoogle Scholar
  91. Pilz A. and Paaß G., From names to entities using thematic context distance. CIKM 2011, 2011. pp. 857--866. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Protege-OWL API, Stanford Center for Biomedical Informatics Research. http://protege.stanford.edu/plugins/owl/api/. Retrieved January 2012.Google ScholarGoogle Scholar
  93. Prudhommeaux E. and Seaborne A., SPARQL Query Language for RDF. W3C Recommendation, 2008. http://www.w3.org/TR/rdf-sparql-query/.Google ScholarGoogle Scholar
  94. Resnik M. et al., Scratch: Programming for All. Communications of the ACM, 2009. 52(11): 60--68, Doi:10.1145/1592761.1592779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Resnik P., Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Proceedings of Inter. IJCAI Conf., 1995. Vol 1, pp. 448--453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Richardson R. and Smeaton A., Using WordNet in a Knowledge-based approach to information retrieval. BCS-IRSG Colloquium, 1995.Google ScholarGoogle Scholar
  97. Rocco D. et al., Domain-Specific Web Service Discovery with Service Class Descriptions. IEEE Inter. Conf. on Web Services (ICWS), 2005, 481--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Santucci G., The Internet of Things: Between the Revolution of the Internet and the Metamorphosis of Objects. CERP-IoT -- Vision and Challenges for Realizing the Internet of Things, Ch. 1, pp. 11--24.Google ScholarGoogle Scholar
  99. Shekarpour S. et al., Keyword-Driven SPARQL Query Generation Leveraging Background Knowledge. IEEE/ACM WI-IAT, 2011. (1)203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Shvaiko P. and Euzenat J., Ten challenges for ontology matching. Proc. of the OTM 2008 Confederated International Conferences, 2008, 1164--1182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Sigurbjörnsson B. and Van Zwol R., Flickr tag recommendation based on collective knowledge. Proc. of Inter. WWW'08 Conf., 2008. pp. 327--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Smith J. R. et al., Revisiting Smart Dust with RFID Sensor Networks. Seventh ACM HotNets-VII Workshop, 2008. Calgary, Alberta, Canada.Google ScholarGoogle Scholar
  103. Spiegler I., Technology and knowledge: Bridging a "Generating" Gap. Information & Management, 2003. 40(6), 533--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Sundmaeker H. et al., Vision and Challenges for Realizing the Internet of Things. CERP-IoT, European Commission - Info. Society and Media, 2010.Google ScholarGoogle Scholar
  105. Tagarelli A. and Greco S., Semantic Clustering of XML Documents. ACM Transactions on Information Systems, 2010. 28(1): 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Taylor A., Harper R., Swan L., Izadi S., Sellen A., and P. M., Homes that Make Us Smart Personal and Ubiquitous Computing, 2007. Vol. 11, Nb. 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Tekli G. et al., XA2C: a framework for manipulating XML data International IJWIS'11 Journal, 2011. 7(3): 240--269.Google ScholarGoogle Scholar
  108. Tekli G. et al., A Visual Programming Language for XML manipulation Journal of Visual Languages and Computations, 2013. 24(2): 110--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Tekli J. et al., A Novel XML Document Structure Comparison Framework based-on Sub-tree Commonalities and Label Semantics. Elsevier Journal of Web Semantics (JWS), 2012. 11: 14--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Terzi E. et al., Knowledge Representation, Ontologies, and the Semantic Web. Asia-Pacific Web Conference (APWeb 2003), 2003. pp. 382--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Theobald M. et al., TopX: Efficient and Versatile Top-k Query Processing for Semistructured Data. The VLDB Journal, 2008. 17: 81--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Tilak S. et al., A Taxonomy of Wireless Micro-Sensor Network Models. ACM Mobile Computing and Communications Review (MC2R), 2002. 6(2). Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Tzitzikas Y. et al., On Storage Policies for Semantic Web Repositories That Support Versioning. Semantic Web: Research and Apps, 2008. 5021: 705--719 Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Umer Q. and Mundy D., Semantically Intelligent Semi-Automated Ontology Integration. Proc. of the World Congress on Eng., 2012. London, U.K.Google ScholarGoogle Scholar
  115. Van Den Heuvel W. J. & Maamar Z., Intelligent Web Services Moving Toward a Framework to Compose. Comm. of the ACM, 2003, 46(10): 103--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Vickrey D. et al., Word Sense Disambiguation for Machine Translation. Proc. of the Inter. EMNLP Conf., 2005. pp. 771--778, Vancouver. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Völker J. and Rudolph S., Fostering Web Intelligence by Semi-automatic OWL Ontology Refinement. Web Intelligence 2008. pp. 454--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Völker J., Vrandecic D., and Sure Y., Automatic Evaluation of Ontologies (AEON). International Semantic Web Conference (ISWC'05), 2005. 716--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Wamba S. F., RFID-enabled Healthcare Applications, Issues, and Benefits: an Archival Analysis Journal of Medical Systems, 2012. 36(6): 3393--3398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Wang B. et al., An Exact Markov Process for Multihop Connectivity via Intervehicle Communication on Parallel Roads. IEEE TWC, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  121. Wang T. et al., Link Energy Minimization for Wireless Sensor Networks. Elsevier Ad Hoc Networks, 2012. 10(3): 569--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Yaworsky D., Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora. Proceedings of the Intern. COLING Conf., 1992. Vol 2, pp. 454--460. Nantes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Ye S. and Chua T. S., Automatically Integrating Heterogeneous Ontologies from Structured Web Pages. Inter. IJSWIS Journal, 2007. 3(2): 96--111.Google ScholarGoogle ScholarCross RefCross Ref
  124. Zhang B. et al., Improving Web Search Results using Affinity Graph. Proc. of Inter. ACM SIGIR Conf., 2005. pp. 504--511, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Zhang H. et al., and Lakshminarayanan M., Domain-Specific Web Services for Scientific Application Developpers. GCE'10 Workshop, 2010. pp. 1--7.Google ScholarGoogle Scholar
  126. Zhang Y. et al., Energy Efficient Design for Body Sensor Nodes. Journal of Low Power Electronics and Applications, 2011. 1(1): 109--130, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  127. Zhao L. and Ichise R., Mid-Ontology Learning from Linked Data. Proc. of Inter. COLING'11 Conf., 2011. pp. 1098--1102, Montreal, Canada.Google ScholarGoogle Scholar
  128. Zheng Y. et al., GeoLife: A Collaborative Social Networking Service among User, Location and Trajectory. IEEE Data Eng. Bull., 2010. 33(2): 32--39.Google ScholarGoogle Scholar
  129. Zhu W. and Vij S., Extending SOA Infrastucture for Semantic Interoperability. DoDSOA & Semantic Technology Symp., 2011. Alion.Google ScholarGoogle Scholar
  130. Zins C., Conceptual Approaches for Defining Data, Information, and Knowledge. JASIST Journal, 2007. 58(4), 479--493. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Semantic to intelligent web era: building blocks, applications, and current trends

              Recommendations

              Reviews

              Tope Omitola

              As the semantic web slowly transforms into the Internet of Things, it is ideal to have the foundational technologies of both summarized in one place. This paper cogently describes the technologies underpinning the semantic web and the Internet of Things. The motivations listed for the development of the semantic web, such as data integration and data accessibility, are broadly correct. The tools of the semantic web-such as the representational languages, including the resource description framework (RDF) and the web ontology language (OWL), and data access languages, including SPARQL-are treated in sufficient depth for a reader to understand. The three main challenges to realizing the semantic web and Internet of Things visions are enumerated. First, fast ubiquitous access will need to be provided at a cheap enough price. Second, in the Internet of Things world, processes, terminals, and data will be heterogeneous; the interoperability of these entities will be a pressing problem. The concept of linked data is useful to mitigate the challenge of semantic interoperability. Third, the Internet of Things will enable a high level of service collaboration, so the issue of effective service composability needs to be solved. Some of the major application domains where the semantic web can be useful are enumerated. Domains such as information retrieval and extraction, machine translation, lexicography, and content analysis are succinctly described. All in all, this paper gives a good introduction to the semantic web and its evolution to the Internet of Things, providing breadth rather than depth. However, it makes up for its lack of depth with a very extensive bibliography. Online Computing Reviews Service

              Access critical reviews of Computing literature here

              Become a reviewer for Computing Reviews.

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Other conferences
                MEDES '13: Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems
                October 2013
                358 pages
                ISBN:9781450320047
                DOI:10.1145/2536146
                • Conference Chairs:
                • Latif Ladid,
                • Antonio Montes,
                • General Chair:
                • Peter A. Bruck,
                • Program Chairs:
                • Fernando Ferri,
                • Richard Chbeir

                Copyright © 2013 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 28 October 2013

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                MEDES '13 Paper Acceptance Rate56of122submissions,46%Overall Acceptance Rate267of682submissions,39%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader