skip to main content
10.1145/2533810.2533814acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Towards fully organic indoor positioning

Published:05 November 2013Publication History

ABSTRACT

Indoor positioning systems based on fingerprinting techniques generally require costly initialization and maintenance by trained surveyors. Organic positioning systems aim to eliminate these deficiencies by managing their own accuracy and obtaining input from users and other sources. Such systems introduce new challenges, e.g., detection and filtering of erroneous user input, estimation of the positioning accuracy, and means of obtaining user input when necessary.

We envision a fully organic indoor positioning system, where all available sources of information are exploited in order to provide room-level accuracy with no active intervention of users. For example, such systems can exploit pre-installed cameras to associate a user's location with a Wi-Fi fingerprint from the user's phone; and it can use a calendar to determine whether a user is in the room reported by the positioning system. Numerous possibilities for integration exist that may provide better indoor positioning.

References

  1. P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In Proc. INFOCOM, pages 775--784, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Baniukevič, C. S. Jensen, and H. Lu. Hybrid indoor positioning with Wi-Fi and Bluetooth: Architecture and performance. In Proc. MDM, pages 207--216, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Barry, B. Fisher, and M. L. Chang. A long-duration study of user-trained 802.11 localization. In Proc. MELT, pages 197--212, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Bhargava, S. Krishnamoorthy, A. Nakshathri, M. Mah, and A. Agrawala. Locus: An indoor localization, tracking and navigation system for multi-story buildings using heuristics derived from Wi-Fi signal strength. LNICST, 120:212--223, 2013.Google ScholarGoogle Scholar
  5. E. Bhasker, S. Brown, and W. G. Griswold. Employing user feedback for fast, accurate, low-maintenance geolocationing. In Proc. PerCom, pages 111--120, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Bolliger. Redpin - adaptive, zero-configuration indoor localization through user collaboration. In Proc. MELT, pages 55--60, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. H. Dörre. Time-activity-patterns of some selected small groups as a basis for exposure estimation: A methodological study. J. Expo. Anal. Environ. Epidemiol., 7:471--491, 1997.Google ScholarGoogle Scholar
  8. V. Filonenko, C. Cullen, and J. D. Carswell. Indoor positioning for smartphones using asynchronous ultrasound trilateration. ISPRS Int. J. Geo-Inf., 2:598--620, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Furey, K. Curran, and P. Mc Kevitt. Incorporating past human movement into indoor location positioning systems for accurate updates. In Proc. IT&T, pages 85--92, 2010.Google ScholarGoogle Scholar
  10. D. Gusenbauer, C. Isert, and J. Krösche. Self-contained indoor positioning on off-the-shelf mobile devices. In Proc. IPIN, pages 1--9, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and I. Timko. Integrated data management for mobile services in the real world. In Proc. VLDB, pages 1019--1030, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Hile and G. Borriello. Positioning and orientation in indoor environments using camera phones. Computer Graphics and Applications, IEEE, 28(4):32--39, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Infiniti Research Limited. Global location based services (LBS) market 2010--2014. Feb. 2011. http://www.researchandmarkets.com/reports/1552300/global_location_based_services_lbs_marketGoogle ScholarGoogle Scholar
  14. A. Isasi, S. Rodriguez, J. L. D. Armentia, and A. Villodas. Location, tracking and identification with RFID and vision data fusion. In Proc. RFID Sys Tech, pages 1--6, 2010.Google ScholarGoogle Scholar
  15. C. S. Jensen, K.-J. Li, and S. Winter. ISA 2010 workshop report: the other 87%: A report on The Second International Workshop on Indoor Spatial Awareness (San Jose, California - November 2, 2010). In SIGSPATIAL Special, 3(1): 10--12, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Koyuncu and S. Hua Yang. A survey of indoor positioning and object locating systems. IJCSNS, 10(5):121--128, 2010.Google ScholarGoogle Scholar
  17. N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol., 11(3):231--252, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  18. T. E. Lacroix. Indoor LBS market report. Sept. 2013. http://www.indoorlbs.com/p/market-report.htmlGoogle ScholarGoogle Scholar
  19. J. A. Link, P. Smith, and K. Wehrle. FootPath: Accurate map-based indoor navigation using smartphones. In Proc. IPIN, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Systems, Man, and Cybernetics, 37(6):1067--1080, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Lovett, E. O'Neill, J. Irwin, and D. Pollington. The calendar as a sensor: Analysis and improvement using data fusion with social networks and location. In Proc. Ubicomp, pages 3--12, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Morimitsu, R. Pimentel, M. Hashimoto, R. Cesar, and R. Hirata. Wi-Fi and keygraphs for localization with cell phones. In Proc. ICCV Workshops, pages 92--99, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Nick, S. Cordes, J. Gotze, and W. John. Camera-assisted localization of passive RFID labels. In Proc. IPIN, pages 1--8, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  24. J.-g. Park, B. Charrow, D. Curtis, J. Battat, E. Minkov, J. Hicks, S. Teller, and J. Ledlie. Growing an organic indoor location system. In Proc. MobiSys, pages 271--284, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. S. Saad and Z. S. Nakad. A standalone RFID indoor positioning system using passive tags. IEEE Trans. Industrial Electronics, 58(5):1961--1970, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. t. Sythoff and J. Morrison. Location-based services market forecast, 2011--2015. Pyramid Research, May 2011. http://www.pyramidresearch.com/store/Report-Location-Based-Services.htmGoogle ScholarGoogle Scholar
  27. Technavio. Global indoor LBS market 2012--2016. Aug. 2013. http://www.researchmoz.us/global-indoor-lbs-market-2012-2016-report.htmlGoogle ScholarGoogle Scholar
  28. S. Van den Berghe, M. Weyn, V. Spruyt, and A. Ledda. Fusing camera and Wi-Fi sensors for opportunistic localization. In Proc. UBICOMM, pages 169--174, 2011.Google ScholarGoogle Scholar
  29. A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv., 38(4), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards fully organic indoor positioning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISA '13: Proceedings of the Fifth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness
        November 2013
        59 pages
        ISBN:9781450325264
        DOI:10.1145/2533810

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 November 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate5of7submissions,71%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader