skip to main content
research-article
Open Access

A blueprint for building a quantum computer

Published:01 October 2013Publication History
Skip Abstract Section

Abstract

Quantum computer architecture holds the key to building commercially viable systems.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bacon, D. and van Dam, W. Recent progress in quantum algorithms. Commun. ACM 53, 2 (Feb. 2010), 84--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beckman, D., Chari, A.N., Devabhaktuni, S. and Preskill, J. Efficient networks for quantum factoring. Phys. Rev. A 54 (1996), 1034--1063; http://arXiv.org/quant-ph/9602016.Google ScholarGoogle ScholarCross RefCross Ref
  3. Brown, K.L., Munro, W.J. and Kendon, V.M. Using quantum computers for quantum simulation. Entropy 12, 11 (2010), 2268--2307.Google ScholarGoogle ScholarCross RefCross Ref
  4. Buluta, I. and Nori, F. Quantum Simulators. Science 326, 5949 (2009), 108--111.Google ScholarGoogle Scholar
  5. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 5797 (2006), 281--285.Google ScholarGoogle ScholarCross RefCross Ref
  6. Clark, C.R., Metodi, T.S., Gasster, S.D. and Brown, K.R. Resource requirements for fault tolerant quantum simulation: The ground state of the transverse Ising model. Phys. Rev. A 79, 6 (June 2009).Google ScholarGoogle ScholarCross RefCross Ref
  7. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J. and Nemoto, K. Architectural design for a topological cluster state quantum computer. New Journal of Physics 11 (2009).Google ScholarGoogle Scholar
  8. Devitt, S.J., Fowler, A.G., Tilma, T., Munro, W.J. and Nemoto, K. Classical processing requirements for a topological quantum computing system. International Journal of Quantum Information 8 (2010), 1--27.Google ScholarGoogle ScholarCross RefCross Ref
  9. Devitt, S.J., Nemoto, K. and Munro, W.J. Quantum error correction for beginners. Reports on Progress in Physics 76, 8 (Aug. 2013).Google ScholarGoogle ScholarCross RefCross Ref
  10. DiVincenzo, D. The physical implementation of quantum computation. Fortschritte der Physik 48, 9-11 (2000), 771--783.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fowler, A., Mariantoni, M., Martinis, J. and Cleland, A. A primer on surface codes: Developing a machine language for a quantum computer. Arxiv preprint (2012); arXiv:1208.0928.Google ScholarGoogle Scholar
  12. Fowler, A.G., Devitt, S.J. and Hollenberg, L.C. Implementation of Shor's algorithm on a linear nearest neighbor qubit array. Quantum Information and Computation 4, 4 (2004), 237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gay, S. Quantum programming languages: Survey and bibliography. Bulletin of the European Association for Theoretical Computer Science (June 2005).Google ScholarGoogle Scholar
  14. Isailovic, N., Whitney, M., Patel, Y. and Kubiatowicz, J. Running a quantum circuit at the speed of data. International Symposium on Computer Architecture. IEEE (2008), 177--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jiang, L., Taylor, J.M., Sørensen, A.S. and Lukin, M.D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76 (Dec 2007).Google ScholarGoogle ScholarCross RefCross Ref
  16. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D. and Yamamoto, Y. Layered architecture for quantum computing. Phys. Rev. 2, 3 (July 2012), 031007.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kielpinski, D., Monroe, C. and Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 417 (2002), 709--711.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kim, J. and Kim, C. Integrated optical approach to trapped ion quantum computation. Quantum Information and Computation 9, 2 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ladd, T., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O'Brien, J. Quantum computers. Nature 464 (Mar. 2010), 45--53.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lanyon, B.P. Universal digital quantum simulation with trapped ions. Science 334, 6052 (2011), 57--61.Google ScholarGoogle ScholarCross RefCross Ref
  21. Leibrandt, D. et al. Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Information and Computation 9, 901 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levy, J.E. et al. Implications of electronics constraints for solid-state quantum error correction and quantum circuit failure probability. New Journal of Physics 13, 8 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  23. Lloyd, S. A potentially realizable quantum computer. Science 261 (1993), 1569--1571.Google ScholarGoogle ScholarCross RefCross Ref
  24. Mariantoni, M. et al. Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 6052 (2011), 61--65.Google ScholarGoogle ScholarCross RefCross Ref
  25. Maslov, D., Falconer, S. and Mosca, M. Quantum Circuit Placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 4 (2008), 752--763. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T. and Chuang, I.L. A quantum logic array microarchitecture: Scalable quantum data movement and computation. In Proceedings of the 2005 International Symposium on Microarchitecture (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Monz, T. et al. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett 106, 13 (Mar. 2011).Google ScholarGoogle ScholarCross RefCross Ref
  28. Mosca, M. Quantum algorithms (2008); Arxiv preprint arXiv:0808.0369.Google ScholarGoogle Scholar
  29. Oi, D.K.L., Devitt, S.J. and Hollenberg, L.C.L. Scalable error correction in distributed ion trap computers. Physical Review A 74, 052313 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  30. Oskin, M., Chong, F.T., Chuang, I.L., and Kubiatowicz, J. Building quantum wires: The long and short of it. In Proceedings of the 30th Annual International Symposium on Computer Architecture (June 2003), ACM, N.Y. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raussendorf, R., Harrington, J. and Goyal, K. Topological fault-tolerance in cluster state quantum computation. New Journal of Physics 9, 199 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  32. Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M. and Blatt, R. Experimental repetitive quantum error correction. Science 332, 6033 (2011), 1059--1061.Google ScholarGoogle ScholarCross RefCross Ref
  33. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 1994, 124--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stace, T.M., Barrett, S.D. and Doherty, A.C. Thresholds for topological codes in the presence of loss. Physical Review Letters 102, 20 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  35. Svore, K.M., Aho, A.V., Cross, A.W., Chuang, I. and Markov, I.L. A layered software architecture for quantum computing design tools. IEEE Computer (Jan 2006), 74--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Van Meter, R., Ladd, T.D., Fowler, A.G. and Yamamoto, Y. Distributed quantum computation architecture using semiconductor nanophotonics. International Journal of Quantum Information 8 (2010), 295--323.Google ScholarGoogle ScholarCross RefCross Ref
  37. Van Meter III, R.D. Architecture of a Quantum Multicomputer Optimized for Shor's Factoring Algorithm. Ph.D. thesis, Keio University, 2006; arXiv:quant-ph/0607065.Google ScholarGoogle Scholar
  38. Vedral, V., Barenco, A. and Ekert, A. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54 (1996), 147--153; http://arXiv.org/quant-ph/9511018.Google ScholarGoogle ScholarCross RefCross Ref
  39. Wootters, W.K. and Zurek, W.H. A single quantum cannot be cloned. Nature 299, 802 (Oct. 1982).Google ScholarGoogle ScholarCross RefCross Ref
  40. Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482 (Feb. 2012), 489--494.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A blueprint for building a quantum computer

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 56, Issue 10
            October 2013
            93 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/2507771
            Issue’s Table of Contents

            Copyright © 2013 Owner/Author

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 October 2013

            Check for updates

            Qualifiers

            • research-article
            • Popular
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format