skip to main content
10.1145/2463209.2488891acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Single-photon image sensors

Published:29 May 2013Publication History

ABSTRACT

The main goal of this paper is to expose the EDA community to the emerging class of circuits operating with single quanta of energy (e.g. photons or electrical carriers). We describe recent developments in the field of single-photon detection and single-photon imaging based on the avalanche effect. Single-photon detection is useful in a number of applications, from time-of-flight based 3D vision systems to fluorescence lifetime imaging microscopy, from low-light cameras to quantum random number generators, from positron emission tomography to time-resolved Raman spectroscopy. These applications have speed and accuracy requirements that conventional systems cannot provide if not at a very high cost. EDA has not yet adapted to the revolution introduced by avalanching devices and, though tools capable of simulating these devices exist, there is little or no capability to do so in a coherent flow, let alone at system level. We challenge CAD designers to fill this gap and prepare them to the circuits of the future, quantum in nature but built in standard CMOS technology.

References

  1. S. Cova, A. Longoni, and A. Andreoni, "Towards Picosecond Resolution with Single-Photon Avalanche Diodes", Rev. Sci. Instr., 52(3), 408--412 (1981).Google ScholarGoogle ScholarCross RefCross Ref
  2. R. J. McIntyre, "Recent Developments in Silicon Avalanche Photodiodes", Measurement, 3(4), 146--152 (1985).Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, "Design and Characterization of a CMOS 3-D Image Sensor based on Single Photon Avalanche Diodes", IEEE J. of Solid-State Circuits, 40(9), 1847--1854 (2005).Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Spinelli and A. Lacaita, "Physics and Numerical Simulation of Single Photon Avalanche Diodes", IEEE Trans. on Electron Devices, 44, 1931--1943 (1997).Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche Photodiodes and Quenching circuits for Single-Photon Detection", Appl. Opt., 35(12), 1956--1976 (1996).Google ScholarGoogle ScholarCross RefCross Ref
  6. H. Finkelstein, M. J. Hsu and S. C. Esener "STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology," IEEE Electron Device Lett., 27(11), 887--889 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Gersbach et al., "A Low-Noise Single-Photon Detector Implemented in a 130nm CMOS Imaging Process", Solid-State Electronics, 53(7), 803--808 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Rochas et al., "Single Photon Detector Fabricated in a Complementary Metal--oxide--semiconductor High-voltage Technology", Rev. Sci. Instr., 74(7), 3263--3270 (2003).Google ScholarGoogle ScholarCross RefCross Ref
  9. L. Pancheri and D. Stoppa, "Low-noise CMOS Single-photon Avalanche Diodes with 32ns Dead Time", IEEE ESSCIRC, (2007).Google ScholarGoogle Scholar
  10. N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, "Fully Integrated Single Photon Avalanche Diode Detector in Standard CMOS 0.18-um Technology", IEEE Trans. on Electron Devices, 55(3), 760--767 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Sergio, C. Niclass, E. Charbon, "A 128x2 CMOS Single Photon Streak Camera with Timing-Preserving Latchless Pipeline Readout", IEEE Intl. Solid-State Circuits Conference, 120--121 (2007).Google ScholarGoogle Scholar
  12. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, "A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array", IEEE J. of Solid-State Circuits, 43(12), 2977--2989 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  13. J. M. Pavia, C. Niclass, C. Favi, M. Wolf, E. Charbon, "3D **Near-infrared Imaging based on a SPAD Image Sensor", International Image Sensor Workshop, (2011).Google ScholarGoogle Scholar
  14. M. Gersbach et al., "A Time-resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology Parallel 32x32 Time-to-Digital Converter Array Fabricated in a 130nm Imaging CMOS Technology", IEEE J. of Solid-State Circuits, 47(6), (2012).Google ScholarGoogle ScholarCross RefCross Ref
  15. J. R. Richardson et al., "A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for time Correlated Imaging", IEEE Custom Integrated Circuits Conference, 77--80 (2009).Google ScholarGoogle Scholar
  16. D. Stoppa et al., "A 32x32-Pixel Array with In-Pixel Photon Counting and Arrival Time Measurement in the Analog Domain", IEEE European Solid-State Device Conference, 204--207 (2009).Google ScholarGoogle Scholar
  17. C. Veerappan et al., "A 160x128 Single-Photon Image Sensor with On-Pixel, 55ps 10b Time-to-Digital Converter", IEEE Intl. Solid-State Circuits Conference, 312--314 (2011).Google ScholarGoogle Scholar
  18. R. J. Walker, J. R. Richardson and R. K. Henderson; "A 128x96 Pixel Event-Driven Phase-Domain ΔΣ-Based Fully Digital 3D Camera in 0.13μm CMOS Imaging Technology", IEEE Intl. Solid-State Circuits Conference, 410--412 (2011).Google ScholarGoogle Scholar
  19. C. Niclass, M. Sergio, and E. Charbon, "A CMOS 64x48 Single Photon Avalanche Diode Array with Event-Driven Readout", IEEE European Solid-State Circuit Conference (ESSCIRC), (2006).Google ScholarGoogle Scholar
  20. S. Donati, G. Martini, M. Norgia, "Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits", Opt. Express 15(26), 18066--18075 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Niclass, M. Soga, S. Kato, "A 0.18μm CMOS Single-Photon Sensor for Coaxial Laser Rangefinders", ASSC, (2010).Google ScholarGoogle Scholar
  22. M. A. Karami, M. Gersbach, E. Charbon, "A New Single-photon Avalanche Diode in 90nm Standard CMOS Technology", SPIE Optics+Photonics, NanoScience Engineering, Single-Photon Imaging, (2010).Google ScholarGoogle Scholar
  23. R. K. Henderson, E. Webster, R. Walker, J. A. Richardson, L. A. Grant, "A 3x3, 5um Pitch, 3-Transistor Single Photon Avalanche Diode Array with Integrated 11V Bias Generation in 90nm CMOS Technology", IEEE International Electron Device Meeting, 1421--1424 (2010).Google ScholarGoogle Scholar
  24. E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, "An infra-red sensitive, low noise, single-photon avalanche diode in 90 nm CMOS," International Image Sensor Workshop (IISW), Hokkaido, Japan, 8--11 June 2011.Google ScholarGoogle Scholar
  25. L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, "A 32x32 SPAD Pixel Array with Nanosecond Gating and Analog Readout", International Image Sensor Workshop (IISW), Hokkaido, Japan, 8--11 June 2011.Google ScholarGoogle Scholar
  26. A. Sammak, M. Aminian, L. Qi, W. D. de Boer, E. Charbon, L. Nanver, "A CMOS Compatible Ge-on-Si APD Operating in Proportional and Geiger Modes at Infrared Wavelengths", International Electron Device Meeting, (2011).Google ScholarGoogle Scholar
  27. Z. Lu, Y. Kang, C. Hu, Q. Zhou, H.-D. Liu, J. C. Campbell, "Geiger-Mode Operation of Ge-on-Si Avalanche Photodiodes", IEEE Journal of Quantum Electronics, 47(5), 731--735 (2011).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Single-photon image sensors

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            DAC '13: Proceedings of the 50th Annual Design Automation Conference
            May 2013
            1285 pages
            ISBN:9781450320719
            DOI:10.1145/2463209

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 29 May 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,770of5,499submissions,32%

            Upcoming Conference

            DAC '24
            61st ACM/IEEE Design Automation Conference
            June 23 - 27, 2024
            San Francisco , CA , USA

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader