skip to main content
10.1145/2488608.2488620acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Low rank approximation and regression in input sparsity time

Published:01 June 2013Publication History

ABSTRACT

We design a new distribution over poly(r ε-1) x n matrices S so that for any fixed n x d matrix A of rank r, with probability at least 9/10, SAx2 = (1 pm ε)Ax2 simultaneously for all x ∈ Rd. Such a matrix S is called a subspace embedding. Furthermore, SA can be computed in O(nnz(A)) + ~O(r2ε-2) time, where nnz(A) is the number of non-zero entries of A. This improves over all previous subspace embeddings, which required at least Ω(nd log d) time to achieve this property. We call our matrices S sparse embedding matrices.

Using our sparse embedding matrices, we obtain the fastest known algorithms for overconstrained least-squares regression, low-rank approximation, approximating all leverage scores, and lp-regression: to output an x' for which Ax'-b2 ≤ (1+ε)minx Ax-b2 for an n x d matrix A and an n x 1 column vector b, we obtain an algorithm running in O(nnz(A)) + ~O(d3ε-2) time, and another in O(nnz(A)log(1/ε)) + ~O(d3log(1/ε)) time. (Here ~O(f) = f ⋅ logO(1)(f).) to obtain a decomposition of an n x n matrix A into a product of an n x k matrix L, a k x k diagonal matrix D, and a n x k matrix W, for which F{A - L D W} ≤ (1+ε)F{A-Ak}, where Ak is the best rank-k approximation, our algorithm runs in O(nnz(A)) + ~O(nk2 ε-4log n + k3ε-5log2n) time. to output an approximation to all leverage scores of an n x d input matrix A simultaneously, with constant relative error, our algorithms run in O(nnz(A) log n) + ~O(r3) time. to output an x' for which Ax'-bp ≤ (1+ε)minx Ax-bp for an n x d matrix A and an n x 1 column vector b, we obtain an algorithm running in O(nnz(A) log n) + poly(r ε-1) time, for any constant 1 ≤ p < ∞. We optimize the polynomial factors in the above stated running times, and show various tradeoffs. Finally, we provide preliminary experimental results which suggest that our algorithms are of interest in practice.

References

  1. Dimitris Achlioptas, Amos Fiat, Anna R. Karlin, and Frank McSherry. Web search via hub synthesis. In FOCS, pages 500--509, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In COLT, pages 458--469, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix approximations. J. ACM, 54(2), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling algorithm for sparsifying matrices. In APPROX-RANDOM, pages 272--279, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared Saia. Spectral analysis of data. In STOC, pages 619--626, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. Theor. Comput. Sci., 312(1):3--15, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and applications. In STOC, pages 549--562, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Clarkson, P. Drineas, Malik Magdon-Ismail, M. Mahoney, Xiangrui Meng, and David P. Woodruff. The fast cauchy transform and faster robust linear regression. In SODA, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In STOC, pages 205--214, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. Sampling algorithms and coresets for lp regression. SIAM J. Comput., 38(5):2060--2078, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss transform. In STOC, pages 341--350, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective clustering via volume sampling. In SODA, pages 1117--1126, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix approximation. In APPROX-RANDOM, pages 292--303, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay. Clustering large graphs via the singular value decomposition. Machine Learning, 56(1--3):9--33, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM J. Comput., 36(1):132--157, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM J. Comput., 36(1):158--183, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM J. Comput., 36(1):184--206, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recommendation systems. In STOC, pages 82--90, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast approximation of matrix coherence and statistical leverage. CoRR, abs/1109.3843, 2011.Google ScholarGoogle Scholar
  20. Petros Drineas, Michael Mahoney, Malik Magdon-Ismail, and David P. Woodruff. Fast approximation of matrix coherence and statistical leverage. In ICML, 2012.Google ScholarGoogle Scholar
  21. Petros Drineas and Michael W. Mahoney. Approximating a Gram matrix for improved kernel-based learning. In COLT, pages 323--337, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for $\ell_2$ regression and applications. In SODA, pages 1127--1136, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-based methods. In APPROX-RANDOM, pages 316--326, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-row-based methods. In ESA, pages 304--314, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster least squares approximation. CoRR, abs/0710.1435, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM, 51(6):1025--1041, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. ArXiv e-prints, September 2009.Google ScholarGoogle Scholar
  28. D.L. Hanson and F.T. Wright. A bound on tail probabilities for quadratic forms in independent random variables. The Annals of Mathematical Statistics, 42(3):1079--1083, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  29. Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. In SODA, pages 1195--1206, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in data streams in optimal space. In STOC, pages 745--754, 2011.ıfSTOC Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method for general mixture models. SIAM J. Comput., 38(3):1141--1156, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604--632, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Avner Magen and Anastasios Zouzias. Low rank matrix-valued Chernoff bounds and approximate matrix multiplication. In SODA, pages 1422--1436, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Frank McSherry. Spectral partitioning of random graphs. In FOCS, pages 529--537, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Meng and M. W. Mahoney. Low-distortion Subspace Embeddings in Input-sparsity Time and Applications to Robust Linear Regression. ArXiv e-prints, October 2012.Google ScholarGoogle Scholar
  36. Gary L. Miller and Richard Peng. Iterative approaches to row sampling. CoRR, abs/1211.2713, 2012.Google ScholarGoogle Scholar
  37. Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. CoRR, abs/1211.1002, 2012.Google ScholarGoogle Scholar
  38. Jelani Nelson and David P. Woodruff. Fast Manhattan sketches in data streams. In PODS, pages 99--110, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nam H. Nguyen, Thong T. Do, and Trac D. Tran. A fast and efficient algorithm for low-rank approximation of a matrix. In STOC, pages 215--224, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala. Latent semantic indexing: A probabilistic analysis. J. Comput. Syst. Sci., 61(2):217--235, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, and Petros Drineas. Random projections for support vector machines. CoRR, abs/1211.6085, 2012.Google ScholarGoogle Scholar
  42. Benjamin Recht. A simpler approach to matrix completion. CoRR, abs/0910.0651, 2009.Google ScholarGoogle Scholar
  43. M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis, 164(1):60--72, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  44. Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric functional analysis. J. ACM, 54(4), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In FOCS, pages 143--152, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to second moment estimation. In SODA, pages 615--624, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Lloyd N. Trefethen and David Bau. Numerical linear algebra. SIAM, 1997.Google ScholarGoogle Scholar
  48. Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. CoRR, abs/1103.2793, 2011.Google ScholarGoogle Scholar
  49. Anastasios Zouzias and Nikolaos M. Freris. Randomized extended Kaczmarz for solving least-squares. CoRR, abs/1205.5770, 2012.Google ScholarGoogle Scholar

Index Terms

  1. Low rank approximation and regression in input sparsity time

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
      June 2013
      998 pages
      ISBN:9781450320290
      DOI:10.1145/2488608

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '13 Paper Acceptance Rate100of360submissions,28%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader