skip to main content
10.1145/2486092.2486095acmconferencesArticle/Chapter ViewAbstractPublication PagespadsConference Proceedingsconference-collections
research-article

A generic adaptive simulation algorithm for component-based simulation systems

Published:19 May 2013Publication History

ABSTRACT

The state of a model may strongly vary during simulation, and with it also the simulation's computational demands. Adapting the simulation algorithm to these demands at runtime can therefore improve the overall performance. Although this is a general and cross-cutting concern, only few simulation systems offer re-usable support for this kind of runtime adaptation. We present a flexible and generic mechanism for the runtime adaptation of component-based simulation algorithms. It encapsulates simulation algorithms applicable to a given problem and employs reinforcement learning to explore the algorithms' suitability during a simulation run. We evaluate the approach by executing models from two modeling formalisms used in computational biology.

References

  1. W. Armstrong, P. Christen, E. McCreath, and A. Rendell. Dynamic algorithm selection using reinforcement learning. In Proc. International Workshop on Integrating AI and Data Mining (AIDM'06), pages 18--25, Dec. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 47(2-3):235--256, May 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. M. Ball and S. M. Hoyt. The adaptive Time-Warp concurrency control algorithm. In Proc. SCS Multiconference on Distributed Simulation, pages 174--177, Jan. 1990.Google ScholarGoogle Scholar
  4. A. G. Barto and S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems, 13(4):341--379, Oct. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Boukerche and S. K. Das. Dynamic load balancing strategies for conservative parallel simulations. In Proc. 11th Workshop on Parallel and Distributed Simulation (PADS'97), pages 20--28, July 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation algorithm forchemically reacting systems. The Journal of Chemical Physics, 121(9):4059--4067, Sept. 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. E. Cellier and E. Kofman. Continuous System Simulation. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. R. Das. Adaptive Protocols for Parallel Discrete-Event Simulation. In Proc. Winter Simulation Conference (WSC'96), pages 186--193, Dec. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Decroly and A. Goldbeter. Birhythmicity, chaos, and other patterns of temporal selforganization in a multiply regulated biochemical system. In Proc. Natl. Acad. Sci. USA, pages 6917--6921, July 1982.Google ScholarGoogle Scholar
  10. R. Ewald. Automatic Algorithm Selection for Complex Simulation Problems. PhD thesis, University of Rostock, 2010.Google ScholarGoogle Scholar
  11. R. M. Fujimoto and M. Hybinette. Computing global virtial time in shared-memory multiprocessors. ACM Transactions on Modeling and Computer Simulation, 7(4):425--446, Oct. 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Software Components. Addison-Wesley Professional, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. The Journal of Chemical Physics, 104(9):1876--1889, Feb. 2000.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):2340--2361, Dec. 1977.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics, 115(4):1716--1733, July 2001.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1--2):43--62, Feb. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Helms. Adaptive Laufzeit-Konfiguration von ML-Rules Simulationen. Master's thesis, University of Rostock, 2012.Google ScholarGoogle Scholar
  18. T. Helms, J. Himmelspach, C. Maus, O. Röwer, J. Schützel, and A. M. Uhrmacher. Toward a language for the flexible observation of simulations. In Proc. Winter Simulation Conference (WSC'12), Dec. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Himmelspach and A. M. Uhrmacher. The event queue problem and PDEVS. In Proc. of the SpringSim '07, DEVS Integrative M&S Symposium, pages 257--264. SCS, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Himmelspach and A. M. Uhrmacher. Plug'n simulate. In Proc. 40th Annual Simulation Symposium (ANSS'07), pages 137--143, Mar. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Jeschke and R. Ewald. Large-Scale Design Space Exploration of SSA. In Proc. 6th International Conference on Computational Methods in Systems Biology (CMSB'08), pages 211--230, Oct. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Kira and L. A. Rendell. The Feature Selection Problem: Traditional Methods and a New Algorithm. In Proc. 10th National Conference on Artificial Intelligence (AAAI'92), pages 129--134, July 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. G. Lagoudakis, M. L. Littman, and R. E. Parr. Selecting the Right Algorithm. In Proc. 2001 AAAI Fall Symposium Series: Using Uncertainty within Computation (AAAI'01), Nov. 2001.Google ScholarGoogle Scholar
  24. M. Lees, B. Logan, C. Dan, and G. K. Oguara, Ton andTheodoropoulos. Decision-Theoretic Throttling for Optimistic Simulationsof Multi-Agent Systems. In Proc. 9th Int'l Symp. on Distributed Simulation and Real Time Applications (DS-RT'05), pages 171--178, Oct. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Li and L. Petzold. Logarithmic Direct Method for Discrete Stochastic Simulation of Chemically Reacting Systems. Technical report, Department of Computer Science, University of California: Santa Barbara, 2006.Google ScholarGoogle Scholar
  26. C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of cell biological systems. BMC Systems Biology, 5(166), Oct. 2011.Google ScholarGoogle Scholar
  27. P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing Adaptive Software. Computer, 37(7):56--64, July 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Meraji, C. Tropper, and W. Zang. A Multi-State Q-learning Approach for the Dynamic Load Balancingof Time Warp. In Proc. 24th Workshop on Principles of Advanced and Distributed Simulation (PADS'10), pages 1--8, May 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. M. Nicol and P. F. Reynolds Jr. Optimal Dynamic Remapping of Data Parallel Computations. IEEE Transactions on Computers, 39(2):206--219, Feb. 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database Systems, 9(1):38--71, Mar. 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. C. Palaniswamy and P. A. Wilsey. Adaptive bounded time windows in an optimistically synchronized simulator. In Proc. 3rd Great Lakes Symposium on Design Automation of High Performance VLSI Systems, pages 114--118, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. I. Reynolds. Decision boundary partitioning: Variable resolution model- free reinforcement learning. In Proc. 17th International Conference on Machine Learning (ICML-2000), pages 783--790, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd edition, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. L. M. Sokol and B. K. Stucky. MTW: Eperimental Results for a Constrained Optimistic Scheduling Paradigm. In Distributed Simulation, volume 22, pages 169--173. SCS, Jan. 1990.Google ScholarGoogle Scholar
  35. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Vermorel and M. Mohri. Multi-armed Bandit Algorithms and Empirical Evaluation. In Proc. 16th European conference on Machine Learning (ECML'05), pages 437--448, Oct. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Vitali, A. Pellegrini, and F. Quaglia. Autonomic Log/Restore for advanced optimistic simulation systems. In Proc. Int'l Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pages 319--327. IEEE CS, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A generic adaptive simulation algorithm for component-based simulation systems

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGSIM PADS '13: Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
        May 2013
        426 pages
        ISBN:9781450319201
        DOI:10.1145/2486092

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 May 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGSIM PADS '13 Paper Acceptance Rate29of75submissions,39%Overall Acceptance Rate398of779submissions,51%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader