skip to main content
research-article
Free Access

Computational epidemiology

Published:01 July 2013Publication History
Skip Abstract Section

Abstract

The challenge of developing and using computer models to understand and control the diffusion of disease through populations.

References

  1. Alon, N., Benjamini, I. and Stacey, A. Percolation on finite graphs and isoperimetric inequalities. Annals of Probability (2004).Google ScholarGoogle Scholar
  2. Aspnes, J., Chang, K.L. and Yampolskiy, A. Inoculation strategies for victims of viruses and the sum-of-squares partition problem. J. Comput. Syst. Sci. (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice Hall. 1986.Google ScholarGoogle Scholar
  4. Barrett, C. et al. Episimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In Proc. of the ACM/IEEE Conference on High Performance Computing (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barrett, C. et al. Generation and analysis of large synthetic social contact networks. In Proc. Winter Simulation Conference (2009), 1003--1014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bisset, K. et al. Indemics: An interactive data intensive framework for high performance epidemic simulation. In Proc. Int. Conf. Supercomputing (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bisset, K. et al. Interaction-based HPC modeling of social, biological, and economic contagions over large networks. In Proc. of Winter Simulation Conference (2011), 2933--2947. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Borgs, C., Chayes, J.T., Ganesh, A. and Saberi, A. How to distribute antidotes to control epidemics. Random Structures and Algorithms (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brauer, F., van den Driessche, P. and Wu, J. editors. Mathematical Epidemiology. Lecture Notes in Mathematics. Springer Verlag, 1945.Google ScholarGoogle Scholar
  10. Broeck, W. et al. The gleamviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases 11, 1:37 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  11. Brownstein, J., Freifeld, c. and Madoff, L. Digital disease detection---harnessing the Web for public health surveillance. N. England J. Med. (2009), 2153--2157.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chung, F. and Lu, L. connected components in random graphs with given degree sequences. Annals of Combinatorics 6 (2002), 125--145.Google ScholarGoogle Scholar
  13. Colizza, V., Barrat, A., Barthelemy, M. and Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS 103, 7 (2006), 2015--2020.Google ScholarGoogle ScholarCross RefCross Ref
  14. Demers, A. et al. Epidemic algorithms for replicated database maintenance. In Proceedings for ACM PODC (1987), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Deodhar, S. et al. Enhancing user-productivity and capability through integration of distinct software in epidemiological systems. IHI (2012), 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Easley, D. and Kleinberg, J. Networks, Crowds and Markets: Reasoning About A Highly Connected World. Cambridge University Press, New York, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Epidemic Routing Bibliography. http://roland.grc.nasa.gov/~weddy/biblio/epidemic/.Google ScholarGoogle Scholar
  18. Cowling, B. et al. Community psychological and behavioral responses through the first wave of the 2009 influenza a (H1N1) pandemic in Hong Kong. J. Infect. Diseases 202 (2010), 867--877.Google ScholarGoogle ScholarCross RefCross Ref
  19. Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature (2008), 1012--1014.Google ScholarGoogle Scholar
  20. Cauchemez, S. et al. Household transmission of 2009 pandemic influenza a (H1N1) virus in the United States. New England J. Medicine 27 (2009), 2619--2627.Google ScholarGoogle ScholarCross RefCross Ref
  21. Eubank, S. et al. Modeling disease outbreaks in realistic urban social networks. Nature 429 (2004), 180--184.Google ScholarGoogle ScholarCross RefCross Ref
  22. Eubank, S. et al. Structure of social networks and their impact on epidemics. DIMACS Discrete Methods in Epidemiology (2006), 179--185.Google ScholarGoogle Scholar
  23. Ferguson, N.M. et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437 (2005), 209--214.Google ScholarGoogle ScholarCross RefCross Ref
  24. Funk, S., Salathé, M. and Jansen, V. Modeling the influence of human behaviour on the spread of infectious diseases: A review. J. R. Soc. Interface 7 (2010), 1247--1256.Google ScholarGoogle ScholarCross RefCross Ref
  25. Gomez-Rodriguez, M., Leskovec, J. and Krause, A. Inferring networks of diffusion and influence. In Proc. 16th ACM KDD, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Van Kerkhove, M. and Ferguson, N. Epidemic and intervention modeling---A scientific rationale for policy decisions: Lessons from the 2009 influenza pandemic. Bull World Health Organ. (2012), 306--310.Google ScholarGoogle Scholar
  27. Lipsitch, M. and et al. Managing and reducing uncertainty in an emerging influenza pandemic. New England Journal of Medicine 361, 2 (2009), 112--115.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lipsitch, M. et al. Improving the evidence base for decision making during a pandemic: The example of 2009 influenza-A H1N1. Biosecur Bioterror. (2011).Google ScholarGoogle Scholar
  29. Livnat, Y., Rhyne, T. and Samore, M. Epinome: A visual-analytics workbench for epidemiology data. IEEE Comp. Graphics & App. 32, 2 (2012), 89--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Longini. I.M. et al. Containing pandemic influenza at the source. Science 309 (2005), 1083--1087.Google ScholarGoogle ScholarCross RefCross Ref
  31. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5, 3 (2008) e74.Google ScholarGoogle ScholarCross RefCross Ref
  32. National Academies. Modeling Community Containment for Pandemic Influenza: A Letter Report (2006).Google ScholarGoogle Scholar
  33. National Academies. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies (2011).Google ScholarGoogle Scholar
  34. National Academies. Vector-Borne diseases: Understanding the Environmental, Human Health, and Ecological Connections (2011).Google ScholarGoogle Scholar
  35. National Institutes of Health, 2009; http://www.nigms.nih.gov/Initiatives/MIDAS/.Google ScholarGoogle Scholar
  36. Neil, D., Moore, A. and Cooper, G. A Bayesian spatial scan statistic. NIPS (2005).Google ScholarGoogle Scholar
  37. Newman, M. The structure and function of complex networks. SIAM Review 45 (2003).Google ScholarGoogle Scholar
  38. Nishiura, H. et al. Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? Sample size estimation for post-epidemic seroepidemiological studies. PLoS ONE 3 (2011).Google ScholarGoogle Scholar
  39. Pastor-Satorras, R. and Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86 (Apr. 2001). 3200--3203.Google ScholarGoogle ScholarCross RefCross Ref
  40. Perumalla, K. and Seal, S. Discrete event modeling and massively parallel execution of epidemic outbreak phenomena. Simulation, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Salathé, M. et al. A high-resolution human contact network for infectious disease transmission. PNAS 107, 51 (2010), 22020--22025.Google ScholarGoogle ScholarCross RefCross Ref
  42. Salathé, M. et al. Digital epidemiology. PLoS Computational Biology 8, 7 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  43. Shah, D. and Zaman, T. Rumors in a network: Who is the culprit? ACM SIGMETRICS (2010).Google ScholarGoogle Scholar
  44. Supplementary information; http://ndssl.vbi.vt.edu/supplementary-info/vskumar/cacm2012/.Google ScholarGoogle Scholar

Index Terms

  1. Computational epidemiology

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 56, Issue 7
        July 2013
        99 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/2483852
        Issue’s Table of Contents

        Copyright © 2013 Owner/Author(s)

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Popular
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format