skip to main content
research-article

Bundled camera paths for video stabilization

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a novel video stabilization method which models camera motion with a bundle of (multiple) camera paths. The proposed model is based on a mesh-based, spatially-variant motion representation and an adaptive, space-time path optimization. Our motion representation allows us to fundamentally handle parallax and rolling shutter effects while it does not require long feature trajectories or sparse 3D reconstruction. We introduce the 'as-similar-as-possible' idea to make motion estimation more robust. Our space-time path smoothing adaptively adjusts smoothness strength by considering discontinuities, cropping size and geometrical distortion in a unified optimization framework. The evaluation on a large variety of consumer videos demonstrates the merits of our method.

Skip Supplemental Material Section

Supplemental Material

tp176.mp4

mp4

34.5 MB

References

  1. Baker, S., Bennett, E. P., Kang, S. B., and Szeliski, R. 2010. Removing rolling shutter wobble. In Proc. CVPR.Google ScholarGoogle Scholar
  2. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. 2008. Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 3, 346--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bronshtein, I. N., and Semendyayev, K. A. 1997. Handbook of Mathematics. Springer-Verlag, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In Proc. ECCV.Google ScholarGoogle Scholar
  5. Buehler, C., Bosse, M., and McMillan, L. 2001. Non-metric image-based rendering for video stabilization. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, B.-Y., Lee, K.-Y., Huang, W.-T., and Lin, J.-S. 2008. Capturing intention-based full-frame video stabilization. Computer Graphics Forum 27, 7, 1805--1814.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cho, S., Wang, J., and Lee, S. 2012. Video deblurring for hand-held cameras using patch-based synthesis. ACM Trans. Graph. (Proc. of SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Forssén, P.-E., and Ringaby, E. 2010. Rectifying rolling shutter video from hand-held devices. In CVPR.Google ScholarGoogle Scholar
  10. Gao, J., Kim, S. J., and Brown, M. S. 2011. Constructing image panoramas using dual-homography warping. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gleicher, M. L., and Liu, F. 2007. Re-cinematography: Improving the camera dynamics of casual video. In Proc. of ACM Multimedia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goldstein, A., and Fattal, R. 2012. Video stabilization using epipolar geometry. ACM Trans. Graph. (TOG) 31, 5, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grundmann, M., Kwatra, V., and Essa, I. 2011. Auto-directed video stabilization with robust l1 optimal camera paths. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grundmann, M., Kwatra, V., Castro, D., and Essa, I. 2012. Calibration-free rolling shutter removal. In Proc. ICCP.Google ScholarGoogle Scholar
  15. Hartley, R., and Zisserman, A. 2003. Multiple View Geometry in Computer Vision, 2 ed. Cambridge University Press, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. (Proc. of SIGGRAPH) 24, 3, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Karpenko, A., Jacobs, D., Baek, J., and Levoy, M. 2011. Digital video stabilization and rolling shutter correction using gyroscopes. In Stanford CS Tech Report.Google ScholarGoogle Scholar
  18. Lee, K.-Y., Chuang, Y.-Y., Chen, B.-Y., and Ouhyoung, M. 2009. Video stabilization using robust feature trajectories. In Proc. ICCV.Google ScholarGoogle Scholar
  19. Liang, C.-K., Chang, L.-W., and Chen, H. H. 2008. Analysis and compensation of rolling shutter effect. In IEEE Trans. on Image Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lin, W.-Y., Liu, S., Matsushita, Y., Ng, T.-T., and Cheong, L.-F. 2011. Smoothly varying affine stitching. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, F., Gleicher, M., Jin, H., and Agarwala, A. 2009. Content-preserving warps for 3d video stabilization. ACM Trans. Graph. (Proc. of SIGGRAPH) 28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, F., Gleicher, M., Wang, J., Jin, H., and Agarwala, A. 2011. Subspace video stabilization. ACM Trans. Graph. 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, S., Wang, Y., Yuan, L., Bu, J., Tan, P., and Sun, J. 2012. Video stabilization with a depth camera. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 674--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Matsushita, Y., Ofek, E., Ge, W., Tang, X., and Shum, H.-Y. 2006. Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1150--1163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Morimoto, C., and Chellappa, R. 1998. Evaluation of image stabilization algorithms. In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, 2789--2792.Google ScholarGoogle Scholar
  27. Nakamura, J. 2005. Image Sensors and Signal Processing for Digital Still Cameras. CRC Press, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nir, T., Bruckstein, A. M., and Kimmel, R. 2008. Over-parameterized variational optical flow. Int. J. Comput. Vision (IJCV) 76, 2, 205--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. (Proc. of SIGGRAPH) 25, 3, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Shum, H.-Y., and Szeliski, R. 2000. Construction of panoramic image mosaics with global and local alignment. Int. J. Comput. Vision (IJCV) 36, 2, 101--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Smith, B. M., Zhang, L., Jin, H., and Agarwala, A. 2009. Light field video stabilization. In Proc. ICCV.Google ScholarGoogle Scholar
  32. Szeliski, R. 1996. Motion estimation with quadtree splines. IEEE Trans. Pattern Anal. Mach. Intell. 18, 12, 1199--1210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bundled camera paths for video stabilization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader