skip to main content
research-article

Scalable real-time volumetric surface reconstruction

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We address the fundamental challenge of scalability for real-time volumetric surface reconstruction methods. We design a memory efficient, hierarchical data structure for commodity graphics hardware, which supports live reconstruction of large-scale scenes with fine geometric details. Our sparse data structure fuses overlapping depth maps from a moving depth camera into a single volumetric representation, from which detailed surface models are extracted. Our hierarchy losslessly streams data bidirectionally between GPU and host, allowing for unbounded reconstructions. Our pipeline, comprised of depth map post-processing, camera pose estimation, volumetric fusion, surface extraction, and streaming, runs entirely in real-time. We experimentally demonstrate that a shallow hierarchy with relatively large branching factors yields the best memory/speed tradeoff, consuming an order of magnitude less memory than a regular grid. We compare an implementation of our data structure to existing methods and demonstrate higher-quality reconstructions on a variety of large-scale scenes, all captured in real-time.

Skip Supplemental Material Section

Supplemental Material

tp145.mp4

mp4

33.8 MB

References

  1. Alliez, P., Cohen-Steiner, D., Tong, Y., and Desbrun, M. 2007. Voronoi-based variational reconstruction of unoriented point sets. In Proc. SGP 2007, vol. 257, Eurographics, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amanatides, J., and Woo, A. 1987. A fast voxel traversal algorithm for ray tracing. In Proc. Eurographics, vol. 87, 3--10.Google ScholarGoogle Scholar
  3. Besl, P., and McKay, N. 1992. A method for registration of 3-D shapes. IEEE Trans. PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bolitho, M., Kazhdan, M., Burns, R., and Hoppe, H. 2007. Multilevel streaming for out-of-core surface reconstruction. In Proc. SGP 2007, vol. 257, Eurographics, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chang, C., Chatterjee, S., and Kube, P. R. 1994. A quantization error analysis for convergent stereo. In Proc. ICIP 94, vol. 2, IEEE, 735--739.Google ScholarGoogle Scholar
  6. Chen, Y., and Medioni, G. 1992. Object modelling by registration of multiple range images. Image and vision computing 10, 3, 145--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chien, C., Sim, Y., and Aggarwal, J. 1988. Generation of volume/surface octree from range data. In Proc. CVPR 98, IEEE, 254--260.Google ScholarGoogle Scholar
  8. Connolly, C. 1984. Cumulative generation of octree models from range data. In Proc. ICRA 84, vol. 1, IEEE, 25--32.Google ScholarGoogle ScholarCross RefCross Ref
  9. Crassin, C., Neyret, F., Lefebvre, S., and Eisemann, E. 2009. GigaVoxels: Ray-guided streaming for efficient and detailed voxel rendering. In Proc. I3D 2009, ACM, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cui, Y., Schuon, S., Chan, D., Thrun, S., and Theobalt, C. 2010. 3D shape scanning with a time-of-flight camera. In Proc. CVPR 2010, IEEE, 1173--1180.Google ScholarGoogle Scholar
  11. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proceedings of SIGGRAPH 96, Annual Conference Series, 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Frisken, S., Perry, R., Rockwood, A., and Jones, T. 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In Proceedings of SIGGRAPH 2000, Annual Conference Series, 249--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fuhrmann, S., and Goesele, M. 2011. Fusion of depth maps with multiple scales. ACM Trans. Graph. 30, 6 (December), 148:1--148:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Greene, N., Kass, M., Miller, G., et al. 1993. Hierarchical z-buffer visibility. In Proceedings of SIGGRAPH 93, Annual Conference Series, 231--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. 2010. RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In Proc. ISER, vol. 20, 22--25.Google ScholarGoogle Scholar
  16. Higuchi, K., Hebert, M., and Ikeuchi, K. 1995. Building 3-d models from unregistered range images. Graphical models and image processing 57, 4, 315--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hilton, A., Stoddart, A., Illingworth, J., and Windeatt, T. 1996. Reliable surface reconstruction from multiple range images. Computer Vision (Proc. ECCV 96), 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T. 1998. Implicit surface-based geometric fusion. Computer Vision and Image Understanding 69, 3, 273--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Computer Graphics, vol. 26, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. 2013. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots 34, 3, 189--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. 2011. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In Proc. UIST 2011, ACM, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. SGP 2006, vol. 256, Eurographics, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Laine, S., and Karras, T. 2010. Efficient sparse voxel octrees. In Proc. I3D 2010, ACM, 55--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., et al. 2000. The digital michelangelo project: 3D scanning of large statues. In Proceedings of SIGGRAPH 2000, Annual Conference Series, 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lorensen, W., and Cline, H. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In Computer Graphics, vol. 21, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Musialski, P., Wonka, P., Aliaga, D., Wimmer, M., van Gool, L., Purgathofer, W., Mitra, N., Pauly, M., Wand, M., Ceylan, D., et al. 2012. A survey of urban reconstruction. In Proc. Eurographics 2012 STARs, Eurographics, 1--28.Google ScholarGoogle Scholar
  27. Newcombe, R., and Davison, A. J. 2010. Live dense reconstruction with a single moving camera. In Proc. CVPR 2010, IEEE, 1498--1505.Google ScholarGoogle Scholar
  28. Newcombe, R., Lovegrove, S. J., and Davison, A. J. 2011. DTAM: Dense tracking and mapping in real-time. In Proc. ICCV 2011, IEEE, 2320--2327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. 2011. KinectFusion: Real-time dense surface mapping and tracking. In Proc. ISMAR, IEEE, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nguyen, C., Izadi, S., and Lovell, D. 2012. Modeling Kinect sensor noise for improved 3D reconstruction and tracking. In Proc. 3DIMPVT 2012, IEEE, 524--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Osher, S., and Fedkiw, R. P. 2003. Level set methods and dynamic implicit surfaces. Applied mathematical science. Springer, New York, N.Y.Google ScholarGoogle Scholar
  32. Parker, S., Shirley, P., Livnat, Y., Hansen, C., and Sloan, P.-P. 1998. Interactive ray tracing for isosurface rendering. In Proc. Visualization 98, IEEE, 233--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., and Koch, R. 2004. Visual modeling with a hand-held camera. IJCV 2004 59, 3, 207--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pollefeys, M., Nistér, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S., Merrell, P., et al. 2008. Detailed real-time urban 3D reconstruction from video. IJCV 2008 78, 2, 143--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Potmesil, M. 1987. Generating octree models of 3d objects from their silhouettes in a sequence of images. Computer Vision, Graphics, and Image Processing 40, 1, 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Roth, H., and Vona, M. 2012. Moving volume KinectFusion. In Proc. BMVC 2012, BMVA Press, 112.1--112.11.Google ScholarGoogle Scholar
  37. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM Trans. Graph. 21, 3 (July), 438--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. CVPR 2006, vol. 1, IEEE, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stückler, J., and Behnke, S. 2012. Robust real-time registration of RGB-D images using multi-resolution surfel representations. In Proc. ROBOTIK 2012, VDE, 1--4.Google ScholarGoogle Scholar
  40. Szeliski, R. 1993. Rapid octree construction from image sequences. CVGIP Image Understanding 58, 23--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Thrun, S., Burgard, W., Fox, D., et al. 2005. Probabilistic Robotics. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  42. Turk, G., and Levoy, M. 1994. Zippered polygon meshes from range images. In Proceedings of SIGGRAPH 94, Annual Conference Series, 311--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Weise, T., Wismer, T., Leibe, B., and Van Gool, L. 2009. In-hand scanning with online loop closure. In Proc. ICCV 2009 Workshops, IEEE, 1630--1637.Google ScholarGoogle ScholarCross RefCross Ref
  44. Wheeler, M., Sato, Y., and Ikeuchi, K. 1998. Consensus surfaces for modeling 3D objects from multiple range images. In Proc. ICCV 98, IEEE, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald, J. 2012. Kintinuous: Spatially extended KinectFusion. In Proc. RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras.Google ScholarGoogle Scholar
  46. Zach, C., Pock, T., and Bischof, H. 2007. A globally optimal algorithm for robust TV-L1 range image integration. In Proc. ICCV 2007, IEEE, 1--8.Google ScholarGoogle Scholar
  47. Zeng, M., Zhao, F., Zheng, J., and Liu, X. 2013. Octree-based fusion for realtime 3d reconstruction. Graphical Models 75, 3 (May), 126--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhou, K., Gong, M., Huang, X., and Guo, B. 2011. Data-parallel octrees for surface reconstruction. IEEE Trans. Visualization and Computer Graphics 17, 5, 669--681. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Scalable real-time volumetric surface reconstruction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader