skip to main content
article

Ubiquitous emotion-aware computing

Authors Info & Claims
Published:01 January 2013Publication History
Skip Abstract Section

Abstract

Emotions are a crucial element for personal and ubiquitous computing. What to sense and how to sense it, however, remain a challenge. This study explores the rare combination of speech, electrocardiogram, and a revised Self-Assessment Mannequin to assess people's emotions. 40 people watched 30 International Affective Picture System pictures in either an office or a living-room environment. Additionally, their personality traits neuroticism and extroversion and demographic information (i.e., gender, nationality, and level of education) were recorded. The resulting data were analyzed using both basic emotion categories and the valence--arousal model, which enabled a comparison between both representations. The combination of heart rate variability and three speech measures (i.e., variability of the fundamental frequency of pitch (F0), intensity, and energy) explained 90% (p < .001) of the participants' experienced valence--arousal, with 88% for valence and 99% for arousal (ps < .001). The six basic emotions could also be discriminated (p < .001), although the explained variance was much lower: 18---20%. Environment (or context), the personality trait neuroticism, and gender proved to be useful when a nuanced assessment of people's emotions was needed. Taken together, this study provides a significant leap toward robust, generic, and ubiquitous emotion-aware computing.

References

  1. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688-2710. Google ScholarGoogle Scholar
  2. Amft O, Lukowicz P (2009) From backpacks to smartphones: past, present, and future of wearable computers. IEEE Pervasive Comput 8(3):8-13. Google ScholarGoogle Scholar
  3. Appelhans BM, Luecken LJ (2006) Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol 10(3):229-240.Google ScholarGoogle Scholar
  4. Arnrich B, Setz C, Marca RL, Troster G, Ehlert U (2010) What does your chair know about your stress level? IEEE Trans Inf Technol Biomed 14(2):207-214. Google ScholarGoogle Scholar
  5. Bailenson JN, Pontikakis ED, Mauss IB, Gross JJ, Jabon ME, Hutcherson CA, Nass C, John O (2008) Real-time classification of evoked emotions using facial feature tracking and physiological responses. Int J Hum Comput Stud 66(5):303-317. Google ScholarGoogle Scholar
  6. Barakova EI, Lourens T (2010) Expressing and interpreting emotional movements in social games with robots. Pers Ubiquitous Comput 14(5):457-467. Google ScholarGoogle Scholar
  7. Barrett LF, Kensinger EA (2010) Context is routinely encoded during emotion perception. Psychol Sci 21(4):595-599.Google ScholarGoogle Scholar
  8. Boersma P (1993) Accurate short-term analysis of the fundamental frequency and the harmonics-to- noise ratio of a sampled sound. In: Proceedings of the Institute of Phonetic Sciences, University of Amsterdam, vol 17, pp 97-110.Google ScholarGoogle Scholar
  9. Boersma PPG, Weenink DJM (2006) Praat 4.0.4. URL: http://www.praat.org {Last accessed on June 22, 2011}.Google ScholarGoogle Scholar
  10. Borders A, Liang CTH (2011) Rumination partially mediates the associations between perceived ethnic discrimination, emotional distress, and aggression. Cult Divers Ethn Minor Psychol 17(2): 125-133.Google ScholarGoogle Scholar
  11. Bose R (2009) Sensor networks motes, smart spaces, and beyond. IEEE Pervasive Comput 8(3):84-90. Google ScholarGoogle Scholar
  12. Bradley MM, Lang PJ (1994) Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Ther Exp Psychol 25(1):49-59.Google ScholarGoogle Scholar
  13. Cacioppo JT, Berntson GG (1994) Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol Bull 115(3):401-423.Google ScholarGoogle Scholar
  14. Cacioppo JT, Tassinary LG, Berntson GG (2007) Handbook of psychophysiology. 3rd edn. Cambridge University Press, NewYork.Google ScholarGoogle Scholar
  15. Carrera P, Oceja L (2007) Drawing mixed emotions: sequential or simultaneous experiences?. Cogn Emot 21(2):422-441.Google ScholarGoogle Scholar
  16. Casson AJ, Abd SJM, Smith DCY, Rodriguez-Villegas JSDE (2010) Wearable electroencephalography. IEEE Eng Med Biol Mag 29(3):44-56.Google ScholarGoogle Scholar
  17. Christie IC, Friedman BH (2004) Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach. Int J Psychophysiol 51(2):143-153.Google ScholarGoogle Scholar
  18. Collet C, Vernet-Maury E, Delhomme G, Dittmar A (1997) Autonomic nervous system response patterns specificity to basic emotions. J Auton Nervous Syst 62(1-2):45-57.Google ScholarGoogle Scholar
  19. Cook DJ, Augusto JC, Jakkula VR (2009) Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob Comput 5(4):277-298. Google ScholarGoogle Scholar
  20. Costa PT Jr, McCrae RR (1980) Influence of extraversion and neuroticism on subjective well-being: happy and unhappy people. J Personal Soc Psychol 38(4):668-678.Google ScholarGoogle Scholar
  21. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG (2001) Emotion recognition in human-computer interaction. IEEE Signal Process Mag 18(1):32-80.Google ScholarGoogle Scholar
  22. Cutmore TRH, James DA (2007) Sensors and sensor systems for psychophysiological monitoring: a review of current trends. J Psychophysiol 21(1):51-71.Google ScholarGoogle Scholar
  23. Dalgleish T, Dunn BD, Mobbs D (2009) Affective neuroscience: past, present, and future. Emot Rev 1(4):355-368.Google ScholarGoogle Scholar
  24. Davidson RJ, Scherer KR, Hill Goldsmith H (2003) Handbook of affective sciences. Oxford University Press, New York.Google ScholarGoogle Scholar
  25. de Berg M, van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications. 3rd edn. Springer, Berlin. Google ScholarGoogle Scholar
  26. Decety J, Ickes W (2009) The social neuroscience of empathy. Social neuroscience series. A Bradford Book, The MIT Press, Cambridge.Google ScholarGoogle Scholar
  27. Eerola T, Vuoskoski JK (2011) A comparison of the discrete and dimensional models of emotion in music. Psychol Music 39(1):18-49.Google ScholarGoogle Scholar
  28. Ekman P, Levenson RW, Friesen WV (1983) Autonomic nervous system activity distinguishes between emotions. Science 221(4616):1208-1210.Google ScholarGoogle Scholar
  29. El Ayadi M, Kamel MS, Karray F (2011) Survey on speech emotion recognition: features, classification schemes, and databases. Patt Recognit 44(3):572-587. Google ScholarGoogle Scholar
  30. Eysenck HJ, Eysenck SBG (1991) Manual of the Eysenck personality scales (EPS adult). Hodder and Stoughton, London.Google ScholarGoogle Scholar
  31. Fagerberg P, Ståhl A, Höök K (2004) eMoto: emotionally engaging interaction. Pers Ubiquitous Comput 8(1):377-381. Google ScholarGoogle Scholar
  32. Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21(1-2):133-145. Google ScholarGoogle Scholar
  33. Fontaine JRJ, Scherer KR, Roesch EB, Ellsworth P (2007) The world of emotion is not two-dimensional. Psychol Sci 18(12):1050-1057.Google ScholarGoogle Scholar
  34. Gershenfeld N, Krikorian R, Cohen D (2004) The Internet of things. Sci Am 291(4):76-81.Google ScholarGoogle Scholar
  35. Grossmann I, Ellsworth PC, Hong Y (2011) Culture, attention, and emotion. J Exp Psy: General. doi:10.1037/a0023817.Google ScholarGoogle Scholar
  36. Gunes H, Piccardi M (2009) Automatic temporal segment detection and affect recognition from face and body display. IEEE Trans Syst Man Cybern B Cybern 39(1):64-84. Google ScholarGoogle Scholar
  37. Hao Y, Foster R (2008) Wireless body sensor networks for health-monitoring applications. Physiol Meas 29(11):R27-R56.Google ScholarGoogle Scholar
  38. Izard CE et al (2010) Special section: on defining emotion. Emot Rev 2(4):363-385.Google ScholarGoogle Scholar
  39. Kamarck TW, Lovallo WR (2003) Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom Med 65(1):9-21.Google ScholarGoogle Scholar
  40. Keltikangas JK, Järvinen L (2001) Intraindividual analysis of instantaneous heart rate variability. Psychophysiology 38(4): 659-668.Google ScholarGoogle Scholar
  41. Kim J (2007) Bimodal emotion recognition using speech and physiological changes, I-Tech Education and Publishing, Vienna, chap 15, pp 265-280.Google ScholarGoogle Scholar
  42. Kim J, André E (2006) Emotion recognition using physiological and speech signal in short-term observation. Lect Notes Comput Sci (Percept Interact Technol) 4021:53-64. Google ScholarGoogle Scholar
  43. Kim J, André E (2008) Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell 30(12):2067-2083. Google ScholarGoogle Scholar
  44. Kim J, André E, Rehm M, Vogt T, Wagner J (2005) Integrating information from speech and physiological signals to achieve emotional sensitivity. In: Proceedings of the 9th European conference on speech communication and technology, L2F-- Spoken Language Systems Laboratory, Lisboa, pp 809-812.Google ScholarGoogle Scholar
  45. Kim J, André E, Vogt T (2009) Towards user-independent classification of multimodal signals. In: Proceedings of the IEEE 3rd international conference on affective computing and intelligent interaction, ACII, IEEE Press, Amsterdam, vol 1, pp 722-728.Google ScholarGoogle Scholar
  46. Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL (1991) Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 68(6):626-630.Google ScholarGoogle Scholar
  47. Kleinsmith A, Bianchi-Berthouze N, Steed A (2011) Automatic recognition of non-acted affective postures. IEEE Trans Syst Man Cybern B Cybern 41(4):1027-1038. Google ScholarGoogle Scholar
  48. Kopetz H (2011) Real-time systems: design principles for distributed and embedded applications, 2nd edn. Real-Time Systems Series, Springer Science+Business Media, LCC, New York. Google ScholarGoogle Scholar
  49. Kring AM, Gordon AH (1998) Sex differences in emotion: expression, experience, and physiology. J Pers Soc Psychol 74(3):686-703.Google ScholarGoogle Scholar
  50. Krumm J (2010) Ubiquitous computing fundamentals. Chapman & Hall, CRC Press, Boca Raton. Google ScholarGoogle Scholar
  51. Landis C, Dewick HN (1929) The electrical phenomena of the skin (psychogalvanic reflex). Psychol Bull 26(2):64-119.Google ScholarGoogle Scholar
  52. Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPS): affective ratings of pictures and instruction manual. Tech. Rep. A-8, University of Florida, Gainesville.Google ScholarGoogle Scholar
  53. Lemov RM (2005) World as laboratory: experiments with mice, mazes, and men. Hill and Wang, New York.Google ScholarGoogle Scholar
  54. Levenson RW, Ruef AM (1992) Empathy: a physiological substrate. J Pers Soc Psychol 63(2):234-246.Google ScholarGoogle Scholar
  55. Levenson RW, Carstensen LL, Friesen WV, Ekman P (1991) Emotion, physiology, and expression in old age. Psychol Aging 6(1):28-35.Google ScholarGoogle Scholar
  56. Levenson RW, Ekman P, Heider K, Friesen WV (1992) Emotion and the autonomous nervous system activity in the Minangkabau of West Sumatra. J Pers Soc Psychol 62(6):972-988.Google ScholarGoogle Scholar
  57. Lewis M, Haviland-Jones JM, Barrett LF (2008) Handbook of emotions. 3rd edn. The Guilford Press, New York.Google ScholarGoogle Scholar
  58. Liu X, Zheng Y, Phyu M, Zhao B, Je M, Yuan X (2011) Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. IEEE Trans Biomed Eng 58(2):380-389.Google ScholarGoogle Scholar
  59. Llabre MM, Spitzer SB, Saab PG, Ironson GH, Schneiderman N (1991) The reliability and specificity of delta versus residualized change as a measure of cardiovascular reactivity to behavioral challenges. Psychophysiology 28(6):701-711.Google ScholarGoogle Scholar
  60. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869-878.Google ScholarGoogle Scholar
  61. Lourens T, van Berkel R, Barakova E (2010) Communicating emotions and mental states to robots in a real time parallel framework using Laban movement analysis. Robot Auton Syst 58(12):1256-1265. Google ScholarGoogle Scholar
  62. Lucas RE, Baird BM (2004) Extraversion and emotional reactivity. J Pers Soc Psychol 86(3):473-485.Google ScholarGoogle Scholar
  63. Malik M, Camm AJ (1995) Heart rate variability. Futura Publishing Company, Inc., Armonk, NY, USA.Google ScholarGoogle Scholar
  64. Martínez JF, Familiar MS, Corredor I, García AB, Bravo S, López L (2011) Composition and deployment of e-Health services over Wireless Sensor Networks. Math Comput Model 53(3-4):485-503. Google ScholarGoogle Scholar
  65. Matzler K, Faullant R, Renzl B, Leiter V (2005) The relationship between personality traits (extraversion and neuroticism), emotions and customer self-satisfaction. Innov Mark 1(2):32-39.Google ScholarGoogle Scholar
  66. Mikels JA, Fredrickson BL, Larkin GR, Lindberg CM, Maglio SJ, Reuter-Lorenz PA (2005) Emotional category data on images from the international affective picture system. Behav Res Methods 37(4):626-630.Google ScholarGoogle Scholar
  67. Millon T, Lerner MJ (2003) Personality and social psychology, handbook of psychology. vol 5, Wiley, Hoboken.Google ScholarGoogle Scholar
  68. Miyamoto Y, Uchida Y, Ellsworth PC (2001) Culture and mixed emotions: co-occurrence of positive and negative emotions in Japan and the United States. Emotions 10(3):404-415.Google ScholarGoogle Scholar
  69. Na J, Grossmann I, Varnum MEW, Gonzalez R, Kitayama S, Nisbett RE (2010) When cultural differences are not reducible to individual differences. Proc Nat Acad Sci USA 107(14): 6192-6197.Google ScholarGoogle Scholar
  70. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Ann Rev Biomed Eng 12:55-85.Google ScholarGoogle Scholar
  71. Neumann SA, Waldsein SR (2001) Similar patterns of cardiovascular response during emotional activation as a function of affective valence and arousal and gender. J Psychosom Res 50(5):245-253.Google ScholarGoogle Scholar
  72. Nevin JA, Reynolds GS (1973) The study of behavior: learning, motivation, emotion, and instinct. Scott, Foresman and Company, Glenview.Google ScholarGoogle Scholar
  73. Niedenthal PM, Augustinova M, Rychlowska M (2010) Body and mind: Zajonc's (re)introduction of the motor system to emotion and cognition. Emot Rev 2(4):340-347.Google ScholarGoogle Scholar
  74. Olejnik S, Li J, Supattathum S, Huberty CJ (1997) Multiple testing and statistical power with modified Bonferroni procedures. J Educ Behav Stat 22(4):389-406.Google ScholarGoogle Scholar
  75. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern C Appl Rev 40(1):1-12. Google ScholarGoogle Scholar
  76. Pantic M, Rothkrantz LJM (2003) Toward an affect-sensitive multimodal human-computer interaction. Proc IEEE 91(9): 1370-1390.Google ScholarGoogle Scholar
  77. Pawar T, Anantakrishnan NS, Chaudhuri S, Pawar TD, Duttagupta S (2008) Impact of ambulation in wearable-ECG. Ann Biomed Eng 36(9):1547-1557.Google ScholarGoogle Scholar
  78. Petridis S, Pantic M (2011) Audiovisual discrimination between speech and laughter: why and when visual information might help. IEEE Trans Multimed 13(2):216-234. Google ScholarGoogle Scholar
  79. Picard RW (1997) Affective computing. MIT Press, Boston. Google ScholarGoogle Scholar
  80. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23(10):1175-1191. Google ScholarGoogle Scholar
  81. Rainville P, Bechara A, Naqvi N, Damasio AR (2006) Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int J Psychophysiol 61(1):5-18.Google ScholarGoogle Scholar
  82. Regier T, Kay P (2009) Language, thought, and color: whorf was half right. Trends Cogn Sci 13(10):411-454.Google ScholarGoogle Scholar
  83. Richter D, Dietzel C, Kunzmann U (2010) Age differences in emotion recognition: the task matters. J Gerontol Psy Sci 66B(1):48-55.Google ScholarGoogle Scholar
  84. Russell JA (2003) Core affect and the psychological construction of emotion. Psychol Rev 110(1):145-172.Google ScholarGoogle Scholar
  85. Rutkowski TM, Tanaka T, Cichocki A, Erickson D, Cao J, Mandic DP (2011) Interactive component extraction from fEEG, fNIRS and peripheral biosignals for affective brain-machine interfacing paradigms. Comput Hum Behav 27(5):1512-1518. Google ScholarGoogle Scholar
  86. Schuller B, Batliner A, Steidl S, Seppi D (2011) Recognising realistic emotions and affect in speech: state of the art and lessons learnt from the first challenge. Speech Commun 27(5):1512-1518. Google ScholarGoogle Scholar
  87. Shen BJ, Stroud LR, Niaura R (2004) Ethnic differences in cardiovascular responses to laboratory stress: a comparison between Asian and white Americans. Int J Behav Med 11(3): 181-186.Google ScholarGoogle Scholar
  88. Skinner BF (1971) Beyond freedom and dignity. Alfred A. Knopf Inc., New York.Google ScholarGoogle Scholar
  89. Stead L, Goulev P, Evans C, Mamdani E (2004) The emotional wardrobe. Pers Ubiquitous Comput 8(3-4):282-290. Google ScholarGoogle Scholar
  90. Stemmler G, Wacker J (2010) Personality, emotion, and individual differences in physiological responses. Biol Psychol 83(3):541-551.Google ScholarGoogle Scholar
  91. Tan DS, Nijholt A (2010) Brain-Computer Interfaces: Applying our minds to human-computer interaction. Human-computer interaction series. Springer, London. Google ScholarGoogle Scholar
  92. Tawari A, Trivedi MM (2010) Speech emotion analysis: exploring the role of context. IEEE Trans MultiMed 12(6):502-509. Google ScholarGoogle Scholar
  93. Uchino BN, Uno D, Holt-Lunstad J, Flinders JB (1999) Agerelated differences in cardiovascular reactivity during acute psychological stress in men and women. J Gerontol Psychol Sci 54B(6):P339-P346.Google ScholarGoogle Scholar
  94. van den Broek EL et al (2009/2010/2011) Prerequisites for Affective signal processing (ASP)--Parts I-V. In: Fred A, Filipe J, Gamboa H (eds) BioSTEC 2009/2010/2011: Proceedings of the international joint conference on biomedical engineering systems and technologies, INSTICC Press, Porto, Portugal, Valencia, Spain, Rome, Italy.Google ScholarGoogle Scholar
  95. van den Broek EL (2010) Robot nannies: future or fiction?. Interact Stud 11(2):274-282.Google ScholarGoogle Scholar
  96. van den Broek EL, Westerink JHDM (2009) Considerations for emotion-aware consumer products. Appl Ergon 40(6):1055- 1064.Google ScholarGoogle Scholar
  97. van den Broek EL, Schut MH, Westerink JHDM, Tuinenbreijer K (2009) Unobtrusive sensing of emotions (USE). J Ambient Intell Smart Env 1(3):287-299. Google ScholarGoogle Scholar
  98. van den Broek EL, Lisy V, Janssen JH, Westerink JHDM, Schut MH, Tuinenbreijer K (2010) Affective man-machine interface: unveiling human emotions through biosignals, communications in computer and information science, vol 52, Springer, Berlin, pp 21-47.Google ScholarGoogle Scholar
  99. van den Broek EL, Nijholt A, Westerink JHDM (2010) Unveiling affective signals. In: Barakova E, de Ruyter B, Spink A (eds) ACM proceedings of measuring behavior 2010: selected papers from the 7th international conference on methods and techniques in behavioral research, ACM, New York, Eindhoven, The Netherlands, Article no. a6. Google ScholarGoogle Scholar
  100. van Drunen A, van den Broek EL, Spink AJ, Heffelaar T (2009) Exploring workload and attention measurements with uLog mouse data. Behav Res Methods 41(3):868-875.Google ScholarGoogle Scholar
  101. Wang L, Gu T, Tao X, Chen H, Lu J (2011) Recognizing multiuser activities using wearable sensors in a smart home. Pervasive Mob Comput 7(3):287-298. Google ScholarGoogle Scholar
  102. Weigert AJ (1991) Mixed emotions: certain steps toward understanding ambivalence. SUNY series in the sociology of emotions. State University of New York Press, Albany.Google ScholarGoogle Scholar
  103. Whitehill J, Littlewort G, Fasel I, Bartlett M, Movellan J (2009) Towards practical smile detection. IEEE Trans Pattern Anal Mach Intell 31(11):2106-2111. Google ScholarGoogle Scholar
  104. Whittle S, Yücel M, Yap MBH, Allen NB (2011) Sex differences in the neural correlates of emotion: evidence from neuroimaging. Biol Psychol 87(3):319-333.Google ScholarGoogle Scholar
  105. Wu S, Falk TH, Chan WY (2011) Automatic speech emotion recognition using modulation spectral features. Speech Commun 53(5):768-785. Google ScholarGoogle Scholar
  106. Xiao S, Dhamdhere A, Sivaraman V, Burdett A (2009) Transmission power control in body area sensor networks for healthcare monitoring. IEEE J Sel Areas Commun 27(1):37-48. Google ScholarGoogle Scholar
  107. Xiao R, Zhao Q, Zhang D, Shi P (2011) Facial expression recognition on multiple manifolds. Pattern Recognit 44(1):107- 116. Google ScholarGoogle Scholar
  108. Young MA (1993) Supplementing tests of statistical significance: variation accounted for. J Speech Hear Res 36(4):644- 656.Google ScholarGoogle Scholar
  109. Zeng Z, Pantic M, Roisman GI, Huang TS (2009) A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Trans on Pattern Anal and Mach Intell 31(1):39-58. Google ScholarGoogle Scholar
  110. Zheng N, Wu Z, Lin M, Yang LT (2010) Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles. IEEE Trans Inf Technol Biomed 14(2):350- 359. Google ScholarGoogle Scholar

Index Terms

  1. Ubiquitous emotion-aware computing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access