skip to main content
10.1145/2380116.2380171acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

KinÊtre: animating the world with the human body

Published:07 October 2012Publication History

ABSTRACT

KinÊtre allows novice users to scan arbitrary physical objects and bring them to life in seconds. The fully interactive system allows diverse static meshes to be animated using the entire human body. Traditionally, the process of mesh animation is laborious and requires domain expertise, with rigging specified manually by an artist when designing the character. KinÊtre makes creating animations a more playful activity, conducted by novice users interactively "at runtime". This paper describes the KinÊtre system in full, highlighting key technical contributions and demonstrating many examples of users animating meshes of varying shapes and sizes. These include non-humanoid meshes and incomplete surfaces produced by 3D scanning - two challenging scenarios for existing mesh animation systems. Rather than targeting professional CG animators, KinÊtre is intended to bring mesh animation to a new audience of novice users. We demonstrate potential uses of our system for interactive storytelling and new forms of physical gaming.

Skip Supplemental Material Section

Supplemental Material

paper_0234-file3.mp4

mp4

86.2 MB

References

  1. Ahmed, N. et al. Automatic generation of personalized human avatars from multi-view video. In Proc. VRST, ACM (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allen, B., B. Curless, and Z. Popović. Articulated body deformation from range scan data. In Proc. SIGGRAPH (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anguelov, D. et al. Scape: shape completion and animation of people. ACM SIGGRAPH (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baran, I., and J. Popović. Automatic rigging and animation of 3d characters. ACM SIGGRAPH (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barnes, C. et al. Video puppetry. ACM SIGGRAPH Asia (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ben-Chen, M., O. Weber, and C. Gotsman. Variational harmonic maps for space deformation. In Proc. SIGGRAPH, ACM (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, Y., and G. Medioni. Object modelling by registration of multiple range images. Image Vision Computing (1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Curless, B., and M. Levoy. A volumetric method for building complex models from range images. In Proc. SIGGRAPH, ACM (1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davis, J. et al. A sketching interface for articulated figure animation. In Proc. Symposium on Computer Animation, ACM SIGGRAPH/Eurographics (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dontcheva, M., G. Yngve, and Z. Popović. Layered acting for character animation. In Proc. SIGGRAPH, ACM (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Garau, M. et al. The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In Proc. CHI, ACM (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3d freeform design. In Proc. SIGGRAPH, ACM (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Igarashi, T., T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. ACM SIGGRAPH (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Igarashi, T., T. Moscovich, and J. F. Hughes. Spatial keyframing for performance-driven animation. In Proc. Symposium on Computer Animation, ACM SIGGRAPH/Eurographics (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Izadi, S. et al. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In Proc. UIST, ACM (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jacobson, A. et al. Bounded biharmonic weights for real-time deformation. In Proc. SIGGRAPH, ACM (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jacobson, A., and O. Sorkine. Stretchable and twistable bones for skeletal shape deformation. In Proc. SIGGRAPH Asia, ACM (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Johnson, M. P. et al. Sympathetic interfaces. In Proc. CHI, ACM (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Joshi, P. et al. Harmonic coordinates for character articulation. In Proc. SIGGRAPH, ACM (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ju, T., S. Schaefer, and J. Warren. Mean value coordinates for closed triangular meshes. In Proc. SIGGRAPH, ACM (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kipp, M., and Q. Nguyen. Multitouch puppetry. In Proc. ITS, ACM (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Knep, B. et al. Dinosaur input device. In Proc. CHI, ACM (1995). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Komatsu, K. Human skin model capable of natural shape variation. The Visual Computer 3, 5 (1988).Google ScholarGoogle ScholarCross RefCross Ref
  24. Lehtinen, J. et al. A meshless hierarchical representation for light transport. ACM SIGGRAPH (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lipman, Y., D. Levin, and D. Cohen-Or. Green coordinates. ACM SIGGRAPH (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Magnenat-Thalmann, N., R. Laperrire, and D. Thalmann. Joint-dependent local deformations for hand animation and object grasping. In Proc. Graphics Interface, Canadian Info. Proc. Society (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schaefer, S., T. McPhail, and J. Warren. Image deformation using moving least squares. ACM SIGGRAPH (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shi, X. et al. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM SIGGRAPH (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shin, H. J. et al. Computer puppetry: An importance-based approach. ACM Trans. on Graphics 20, 2 (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Shotton, J. et al. Real-time human pose recognition in parts from single depth images. In Proc. CVPR, IEEE (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sturman, D. J. Computer puppetry. IEEE Computer Graphics & Applications 18, 1 (1998). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sumner, R. W., J. Schmid, and M. Pauly. Embedded deformation for shape manipulation. ACM SIGGRAPH (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thorne, M., D. Burke, and M. van de Panne. Motion doodles: an interface for sketching character motion. ACM SIGGRAPH (Aug. 2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Vlasic, D. et al. Articulated mesh animation from multi-view silhouettes. ACM SIGGRAPH (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yamane, K., Y. Ariki, and J. Hodgins. Animating non-humanoid characters with human motion data. In Proc. SCA, ACM SIGGRAPH/Eurographics (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. KinÊtre: animating the world with the human body

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '12: Proceedings of the 25th annual ACM symposium on User interface software and technology
      October 2012
      608 pages
      ISBN:9781450315807
      DOI:10.1145/2380116

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 October 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader