skip to main content
10.1145/2342356.2342363acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Spinal codes

Published:13 August 2012Publication History

ABSTRACT

Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the sequential application of a pseudo-random hash function to the message bits to produce a sequence of coded symbols for transmission. This encoding ensures that two input messages that differ in even one bit lead to very different coded sequences after the point at which they differ, providing good resilience to noise and bit errors. To decode spinal codes, this paper develops an approximate maximum-likelihood decoder, called the bubble decoder, which runs in time polynomial in the message size and achieves the Shannon capacity over both additive white Gaussian noise (AWGN) and binary symmetric channel (BSC) models. Experimental results obtained from a software implementation of a linear-time decoder show that spinal codes achieve higher throughput than fixed-rate LDPC codes, rateless Raptor codes, and the layered rateless coding approach of Strider, across a range of channel conditions and message sizes. An early hardware prototype that can decode at 10 Mbits/s in FPGA demonstrates that spinal codes are a practical construction.

Skip Supplemental Material Section

Supplemental Material

sigcomm-ii-02-spinalcodes.mp4

mp4

75.4 MB

References

  1. J. Anderson and S. Mohan. Sequential coding algorithms: A survey and cost analysis. IEEE Trans. on Comm., 32(2):169--176, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  2. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate (Corresp.). IEEE Trans. Info. Theory, 20(2):284--287, 1974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Balakrishnan, P. Iannucci, J. Perry, and D. Shah. De-randomizing Shannon: The Design and Analysis of a Capacity-Achieving Rateless Code. arXiv:1206.0418, June 2012.Google ScholarGoogle Scholar
  4. R. Barron, C. Lo, and J. Shapiro. Global design methods for raptor codes using binary and higher-order modulations. In MILCOM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bernstein. The Salsa20 Family of Stream Ciphers. Lecture Notes in Computer Science, 4986:84--97, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding and decoding: Turbo-codes (1). In ICC, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Bicket. Bit-Rate Selection in Wireless Networks. Master's thesis, Massachusetts Institute of Technology, Feb. 2005.Google ScholarGoogle Scholar
  8. Erez, U. and Trott, M. and Wornell, G. Rateless Coding for Gaussian Channels. IEEE Trans. Info. Theory, 58(2):530--547, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Etesami, M. Molkaraie, and A. Shokrollahi. Raptor codes on symmetric channels. In ISIT, 2005.Google ScholarGoogle Scholar
  10. J. Frigon and B. Daneshrad. Field measurements of an indoor high-speed QAM wireless system using decision feedback equalization and smart antenna array. IEEE Trans. Wireless Comm., 1(1):134--144, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Gallager. Low-density parity-check codes. IRE Trans. Information Theory, 8(1):21--28, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Gudipati and S. Katti. Strider: Automatic rate adaptation and collision handling. In SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Ha, J. Kim, and S. McLaughlin. Rate-compatible puncturing of low-density parity-check codes. IEEE Trans. Info. Theory, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 packet delivery from wireless channel measurements. In SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol for Multihop Wireless Networks. In MobiCom, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Iannucci, J. Perry, H. Balakrishnan, and D. Shah. No Symbol Left Behind: A Link-Layer Protocol for Rateless Codes. In MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Jelinek. Fast sequential decoding algorithm using a stack. IBM Journal of Research and Development, 13(6):675--685, 1969. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Judd, X. Wang, and P. Steenkiste. Efficient Channel-aware Rate Adaptation in Dynamic Environments. In MobiSys, June 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. IEEE Std 802.11n-2009: Enhancements for Higher Throughput.Google ScholarGoogle Scholar
  20. J. Li and K. Narayanan. Rate-compatible low density parity check codes for capacity-approaching ARQ scheme in packet data communications. In Int. Conf. on Comm., Internet, and Info. Tech., 2002.Google ScholarGoogle Scholar
  21. M. Luby. LT codes. In FOCS, 2003.Google ScholarGoogle Scholar
  22. M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor Forward Error Correction Scheme for Object Delivery. RFC 5053 (Proposed Standard), Oct. 2007.Google ScholarGoogle Scholar
  23. R. Mantha and F. Kschischang. A capacity-approaching hybrid ARQ scheme using turbo codes. In GLOBECOM, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and probabilistic analysis, chapter 13, pages 321--326. Cambridge University Press, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrishnan. Airblue: A System for Cross-Layer Wireless Protocol Development. In ANCS, Oct. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Palanki and J. Yedidia. Rateless codes on noisy channels. In ISIT, 2005.Google ScholarGoogle Scholar
  27. J. Perry, H. Balakrishnan, and D. Shah. Rateless Spinal Codes. In HotNets-X, Oct. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Pottie and D. Taylor. A comparison of reduced complexity decoding algorithms for trellis codes. JSAC, 7(9):1369--1380, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Schurgers and M. B. Srivastava. A Systematic Approach to Peak-to-Average Power Ratio in OFDM. In SPIE's 47th Meeting, 2001.Google ScholarGoogle Scholar
  30. S. Sen, N. Santhapuri, R. Choudhury, and S. Nelakuditi. AccuRate: Constellation-based rate estimation in wireless networks. NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Sesia, G. Caire, and G. Vivier. Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes. IEEE Trans. on Comm., 52(8):1311--1321, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  32. C. Shannon. Communication in the presence of noise. Proc. of the IRE, 37(1):10--21, 1949.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Shokrollahi. Raptor codes. IEEE Trans. Info. Theory, 52(6), 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. N. Shulman. Universal channel coding. PhD thesis, Tel-Aviv University, 2004.Google ScholarGoogle Scholar
  35. E. Soljanin, N. Varnica, and P. Whiting. Incremental redundancy hybrid ARQ with LDPC and Raptor codes. IEEE Trans. Info. Theory, 2005.Google ScholarGoogle Scholar
  36. E. Telatar. Capacity of Multi-Antenna Gaussian Channels. European Trans. on Telecom., 10(6):585--595, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. Ungerboeck. Channel coding with multilevel/phase signals. IEEE Trans. Info. Theory, IT-28(1):55--67, Jan. 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Ungerboeck and I. Csajka. On improving data-link performance by increasing the channel alphabet and introducing sequence coding. In ISIT, 1976.Google ScholarGoogle Scholar
  39. A. Vila Casado, M. Griot, and R. Wesel. Informed dynamic scheduling for Belief-Propagation decoding of LDPC codes. In IEEE ICC, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  40. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Info. Theory, 13(2):260--269, 1967. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Layer Wireless Bit Rate Adaptation. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Wicker and V. Bhargava. Reed-Solomon codes and their applications. Wiley-IEEE Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate Adaptation for 802.11 Wireless Networks. In MobiCom, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spinal codes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGCOMM '12: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication
        August 2012
        474 pages
        ISBN:9781450314190
        DOI:10.1145/2342356

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 August 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate554of3,547submissions,16%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader