skip to main content

Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices

Published:01 August 2012Publication History
Skip Abstract Section

Abstract

Computing the Pfaffian of a skew-symmetric matrix is a problem that arises in various fields of physics. Both computing the Pfaffian and a related problem, computing the canonical form of a skew-symmetric matrix under unitary congruence, can be solved easily once the skew-symmetric matrix has been reduced to skew-symmetric tridiagonal form. We develop efficient numerical methods for computing this tridiagonal form based on Gaussian elimination, using a skew-symmetric, blocked form of the Parlett-Reid algorithm, or based on unitary transformations, using block Householder transformations and Givens rotations, that are applicable to dense and banded matrices, respectively. We also give a complete and fully optimized implementation of these algorithms in Fortran (including a C interface), and also provide Python, Matlab and Mathematica implementations for convenience. Finally, we apply these methods to compute the topological charge of a class D nanowire, and show numerically the equivalence of definitions based on the Hamiltonian and the scattering matrix.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aasen, J. O. 1971. On the reduction of a symmetric matrix to tridiagonal form. BIT Numer. Math. 11, 233--242.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Akhmerov, A. R., Dahlhaus, J. P., Hassler, F., Wimmer, M., and Beenakker, C. W. J. 2011. Quantized conductance at the Majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett. 106, 5, 057001.Google ScholarGoogle ScholarCross RefCross Ref
  3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’ Guide 3rd Ed. Society for Industrial and Applied Mathematics, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bajdich, M. and Mitas, L. 2009. Electronic structure quantum Monte Carlo. Acta Phys. Slov. 59, 81--168.Google ScholarGoogle Scholar
  5. Bajdich, M., Mitas, L., Wagner, L. K., and Schmidt, K. E. 2008. Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods. Phys. Rev. B 77, 115112.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bardarson, J. H. 2008. A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix. J. Phys. A: Math. Theor. 41, 40, 405203.Google ScholarGoogle ScholarCross RefCross Ref
  7. Béri, B. 2009. Dephasing-enabled triplet Andreev conductance. Phys. Rev. B 79, 24, 245315.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bunch, J. R. 1982. A note on the stable decompostion of skew-symmetric matrices. Math. Comput. 38, 475--479.Google ScholarGoogle Scholar
  9. Bunch, J. R. and Kaufman, L. 1977. Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comput. 31, 137, pp. 163--179.Google ScholarGoogle ScholarCross RefCross Ref
  10. Evers, F. and Mirlin, A. D. 2008. Anderson transitions. Rev. Mod. Phys. 80, 4, 1355.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fu, L. and Kane, C. L. 2007. Topological insulators with inversion symmetry. Phys. Rev. B 76, 4, 045302.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fulga, I. C., Hassler, F., Akhmerov, A. R., and Beenakker, C. W. J. 2011. Scattering formula for the topological quantum number of a disordered multimode wire. Phys. Rev. B 83, 155429.Google ScholarGoogle ScholarCross RefCross Ref
  13. Galbiati, G. and Maffioli, F. 1994. On the computation of pfaffians. Discrete Appl. Math. 51, 3, 269--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gibbs, N. E., William, G., Poole, J., and Stockmeyer, P. K. 1976. An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Num. Anal. 13, 2, 236--250.Google ScholarGoogle ScholarCross RefCross Ref
  15. Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. The John Hopkins University Press, Baltimore, London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. González-Ballestero, C., Robledo, L., and Bertsch, G. 2011. Numeric and symbolic evaluation of the pfaffian of general skew-symmetric matrices. Comput. Phys. Commun. 182, 10, 2213--2218.Google ScholarGoogle ScholarCross RefCross Ref
  17. Haake, F. 2004. Quantum Signatures of Chaos. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hastings, M. B. and Loring, T. A. 2011. Topological insulators and C*-algebras: Theory and numerical practice. Ann. Physics 326, 7, 1699--1759.Google ScholarGoogle ScholarCross RefCross Ref
  19. Higham, N. J. 2002. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia. PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hua, L.-K. 1944. On the theory of automorphic functions of a matrix variable I-geometrical basis. Amer. J. Math. 66, 3, 470--488.Google ScholarGoogle ScholarCross RefCross Ref
  21. Irony, D. and Toledo, S. 2006. The snap-back pivoting method for symmetric banded indefinite matrices. SIAM. J. Matrix Anal. Appl. 28, 398--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaufman, L. 1984. Banded eigenvalue solvers on vector machines. ACM Trans. Math. Softw. 10, 73--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kaufman, L. 2000. Band reduction algorithms revisited. ACM Trans. Math. Softw. 26, 551--567. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kaufman, L. 2007. The retraction algorithm for factoring banded symmetric matrices. Numer. Linear Algebra Appl. 14, 3, 237--254.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kitaev, A. Y. 2001. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44, 10S, 131.Google ScholarGoogle ScholarCross RefCross Ref
  26. Krauth, W. 2006. Statistical Mechanics: Algorithms and Computations. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  27. Lehoucq, R. 1995. The computation of elementary unitary matrices. LAPACK Working Note 72. University of Tennessee.Google ScholarGoogle Scholar
  28. Lutchyn, R. M., Sau, J. D., and Das Sarma, S. 2010. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 7, 077001.Google ScholarGoogle ScholarCross RefCross Ref
  29. Montvay, I. 1996. An algorithm for gluinos on the lattice. Nucl. Phys. B 466, 1--2, 259--281.Google ScholarGoogle ScholarCross RefCross Ref
  30. Moore, G. and Read, N. 1991. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 2--3, 362--396.Google ScholarGoogle ScholarCross RefCross Ref
  31. Oreg, Y., Refael, G., and von Oppen, F. 2010. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 17, 177002.Google ScholarGoogle ScholarCross RefCross Ref
  32. Parlett, B. N. and Reid, J. K. 1970. On the solution of a system of linear equations whose matrix is symmetric but not definite. BIT Numer. Math. 10, 386--397.Google ScholarGoogle Scholar
  33. Potter, A. C. and Lee, P. A. 2010. Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films. Phys. Rev. Lett. 105, 22, 227003.Google ScholarGoogle ScholarCross RefCross Ref
  34. Rote, G. 2001. Division-Free Algorithms for the Determinant and the Pfaffian: Algebraic and Combinatorial Approaches. In Computational Discrete Mathematics, H. Alt Ed., Springer, 119--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rozložník, M., Shklarski, G., and Toledo, S. 2011. Partitioned triangular tridiagonalization. ACM Trans. Math. Softw. 37, 4, 38:1--38:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rubow, J. and Wolff, U. 2011. A factorization algorithm to compute Pfaffians. Comput. Phys. Comm. 182, 12, 2530--2532.Google ScholarGoogle ScholarCross RefCross Ref
  37. Schwarz, H. 1968. Tridiagonalization of a symetric band matrix. Numer. Math. 12, 4, 231--241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Stander, J. W. and Wiegman, N. A. 1960. Canonical forms for certain matrices under unitary congruence. Can. J. Math 12, 438.Google ScholarGoogle ScholarCross RefCross Ref
  39. Thomas, C. K. and Middleton, A. A. 2009. Exact algorithm for sampling the two-dimensional ising spin glass. Phys. Rev. E 80, 4, 046708.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ward, R. C. and Gray, L. J. 1978a. Algorithm 530: An algorithm for computing the eigensystem of skew-symmetric matrices and a class of symmetric matrices {F2)}. ACM Trans. Math. Softw. 4, 3, 286--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ward, R. C. and Gray, L. J. 1978b. Eigensystem computation for skew-symmetric and a class of symmetric matrices. ACM Trans. Math. Softw. 4, 3, 278--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wimmer, M., Akhmerov, A. R., Medvedyeva, M. V., Tworzydło, J., and Beenakker, C. W. J. 2010. Majorana bound states without vortices in topological superconductors with electrostatic defects. Phys. Rev. Lett. 105, 4, 046803.Google ScholarGoogle ScholarCross RefCross Ref
  43. Wimmer, M. and Richter, K. 2009. Optimal block-tridiagonalization of matrices for coherent charge transport. J. Comput. Phys. 228, 8548. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices

          Recommendations

          Reviews

          Charles Raymond Crawford

          The Pfaffian of a matrix, like the determinant, is a polynomial in the matrix elements. It is most frequently used in particle physics where the matrix is even-ordered and skew-symmetric, and the determinant is the square of the Pfaffian. In these problems, the Pfaffian is used to define a particular choice of sign for the root of the determinant. The methods in this paper first reduce the given matrix to an equivalent tridiagonal form, from which the Pfaffian can be computed directly. The first section of the paper summarizes several published methods for the reduction of skew-symmetric matrices to tridiagonal form. The second section describes the routines that make up Algorithm 923, and a final section describes the results of tests with those routines. The routines are written in Fortran95, Mathematica, MATLAB, and Python. The Fortran routines are for complex or real matrices in single or double precision. The author also provides C-language interface definitions. The first two sections of the paper include interesting background results on skew-symmetric real and complex matrices, as well as the Pfaffian, supported by an extensive bibliography. The author shows how methods for real skew-symmetric matrices can be adapted for complex matrices. He also describes in detail one application of the Pfaffian to a problem in particle physics. The author mentions three appendices, which are available online. Online Computing Reviews Service

          Access critical reviews of Computing literature here

          Become a reviewer for Computing Reviews.

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 38, Issue 4
            August 2012
            168 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/2331130
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 August 2012
            • Accepted: 1 July 2011
            • Received: 1 February 2011
            Published in toms Volume 38, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader