skip to main content
10.1145/2207676.2208520acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Personalized input: improving ten-finger touchscreen typing through automatic adaptation

Authors Info & Claims
Published:05 May 2012Publication History

ABSTRACT

Although typing on touchscreens is slower than typing on physical keyboards, touchscreens offer a critical potential advantage: they are software-based, and, as such, the keyboard layout and classification models used to interpret key presses can dynamically adapt to suit each user's typing pattern. To explore this potential, we introduce and evaluate two novel personalized keyboard interfaces, both of which adapt their underlying key-press classification models. The first keyboard also visually adapts the location of keys while the second one always maintains a visually stable rectangular layout. A three-session user evaluation showed that the keyboard with the stable rectangular layout significantly improved typing speed compared to a control condition with no personalization. Although no similar benefit was found for the keyboard that also offered visual adaptation, overall subjective response to both new touchscreen keyboards was positive. As personalized keyboards are still an emerging area of research, we also outline a design space that includes dimensions of adaptation and key-press classification features.

References

  1. Al Faraj, K., Mojahid, M., Vigouroux, N. 200 BigKey: A Virtual Keyboard for Mobile Devices. Proc. HCII, 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aulagner, G., François, R., Martin, B., Michel, D., Raynal, M. 2010. Floodkey: increasing software keyboard keys by reducing needless ones without occultation. Proc. ACS'10, 412--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barrett, J. 1994. Performance effects of reduced proprioceptive feedback on touch typists and casual users in a typing task. Behaviour & Information Technology 13(6), 373--381.Google ScholarGoogle ScholarCross RefCross Ref
  4. Benko, H., Morris, M. R., Brush, A. J. B., Wilson, A. D. 2009. Insights on Interactive Tabletops: A Survey of Researchers and Developers. Microsoft Research Technical Report MSR-TR-2009-22. March, 2009.Google ScholarGoogle Scholar
  5. Findlater, L., Gajos, K. 2010. Design space and evaluation challenges of adaptive graphical user interfaces. AI Magazine 30(4), 68--73.Google ScholarGoogle ScholarCross RefCross Ref
  6. Findlater, L., Wobbrock, O., Wigdor, D. 20 Typing on flat glass: examining ten-finger expert typing patterns on touch surfaces. Proc. CHI 2011, 2453--2462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Go, K., Endo, Y. 2007. CATKEY: Customizable and adaptable touchscreen keyboard with bubble cursor-like visual feedback. Proc. IFIP Interact, 493--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goldstein, M., Book, R., Alsiö, G., Tessa, S. 1999. Non-keyboard QWERTY touch typing: a portable input interface for the mobile user. Proc. CHI'99, 32--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Goodman, J., Venolia, G., Steury, K., Parker, C. 2002. Language modeling for soft keyboards. Proc. IUI '02, 194--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gunawardana, A., Paek, T., Meek, C. 2010. Usability guided key-target resizing for soft keyboards. Proc. IUI '10, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hart, S. G., Staveland, L. E. 1988. Development of Nasa Tlx (Task Load Index): Results of Empirical and Theoretical Research. Human Mental Workload (1988), 139--183.Google ScholarGoogle Scholar
  12. Hartmann, B., Morris, M. R., Benko, H., Wilson, A. D. 2009. Augmenting interactive tables with mice & keyboards. Proc. UIST '09, 149--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Himberg, J., Häkkilä, J., Kangas, P., Mäntyjärvi, J. 2003. On-line personalization of a touch screen based keyboard. Proc. IUI 2003, 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hinrichs, U., Hancock, M., Collins, C., Carpendale, S. 2007. Examination of text-entry methods for tabletop displays. Proc. Tabletop 2007, 105--112.Google ScholarGoogle Scholar
  15. Hirche, J., Bomark, P., Bauer, M., Solyga, P. 2008. Adaptive interface for text input on large-scale interactive surfaces. Proc. IEEE International Workshop on Horizontal Interactive Human Computer System (TABLETOP), 153--156.Google ScholarGoogle ScholarCross RefCross Ref
  16. Höök, K. 2000. Steps to take before intelligent user interfaces become real. Journal of Interacting with Computers 12(4), 409--426.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jameson, A. 2008. Adaptive interfaces and agents. In A. Sears & J. Jacko (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (2nd ed.), 433--458. CRC Press.Google ScholarGoogle Scholar
  18. Kohavi, R., John, G. H. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1-2, 273--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kristensson, P. & Zhai, S. 2004. SHARK2: a large vocabulary shorthand writing system for pen-based computers. Proc. UIST '04, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kristensson, P. & Zhai, S. 2005. Relaxing stylus typing precision by geometric pattern matching. Proc. IUI '05, 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Langendorf, D. J.: Textware solution's Fitaly keyboard v1.0 easing the burden of keyboard input. WinCELair Review, February 1998.Google ScholarGoogle Scholar
  22. Li, F. C. Y, Guy, R. T., Yatani, K., Truong, K. N. 2011. The 1line keyboard: a QWERTY layout in a single line. Proc. UIST '11, 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. MacKenzie, I. S., Soukoreff, R. W. 2003. Phrase sets for evaluating text entry techniques. Extended Abstracts CHI '03, 754--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. MacKenzie, I. S., Zhang, S. X. 1999. The design and evaluation of a high-performance soft keyboard. Proc. CHI '99, 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MacKenzie, I. S., Zhang, S. X. 2001. An empirical investigation of the novice experience with soft keyboards. Behaviour & Information Technology 20, 411--418.Google ScholarGoogle ScholarCross RefCross Ref
  26. McAdam, C., Brewster, S. 2009. Distal tactile feedback for text entry on tabletop computers. Proc. BCS-HCI'09, 504--511. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Morris, M. R., Lombardo, J., Wigdor, D. 2010. WeSearch: Supporting Collaborative Search and Sensemaking on a Tabletop Display. Proc. CSCW 2010, 401--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rashid, D. R. and Smith, N. A. 2008. Relative keyboard input system. Proc. IUI '08, 397--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Roeber, H., Bacus, J., Tomasi, C. 2003. Typing in thin air: the Canesta projection keyboard - a new method of interaction with electronic devices. Proc. CHI '03, 712--713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rudchenko, D., Paek, T., Badger, E. 2011. Text Text Revolution: a game that improves text entry on mobile touchscreen keyboards. Proc. Pervasive 2011, 206--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ryall, K., Forlines, C., Shen, C., Ringel Morris, M., Everitt, K. 2006. Experiences with and Observations of Direct-Touch Tabletops. Proc. Tabletop 2006, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sax, C., Lau, H., Lawrence, E. 2011. LiquidKeyboard: an ergonomic, adaptive QWERTY keyboard for touchscreens and surfaces. Proc. ICDS 2011, 117--122.Google ScholarGoogle Scholar
  33. Sears, A., Revis, D., Swatski, J., Crittenden, R., Shneiderman, B. 1993. Investigating touchscreen typing: the effect of keyboard size on typing speed. Behavour & Information Technology 12(1), 17--22.Google ScholarGoogle ScholarCross RefCross Ref
  34. Sokal, R. R., Rohlf, F. J. 1994. Biometry: The Principles and Practices of Statistics in Biological Research. 3rd ed. New York, NY: W. H. Freeman.Google ScholarGoogle Scholar
  35. Soukoreff, R. W., MacKenzie, I. S. 2003. Metrics for text entry research: an evaluation of MSD and KSPC, and a new unified error metric. Proc. CHI '03, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J. D., Borchers, J. 2009. SLAP widgets: bridging the gap between virtual and physical controls on tabletops. Proc. CHI '09, 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wigdor, D., Penn, G., Ryall, K., Esenther, A., Shen, C. 2007. Living with a Tabletop: Analysis and Observations of Long Term Office Use of a Multi-Touch Table. Proc. Tabletop 2007, 60--67.Google ScholarGoogle Scholar
  38. Wobbrock, J. O, Myers, B. A. 2006. From letters to words: efficient stroke-based word completion for trackball text entry. Proc. Assets '06, 2--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wobbrock, J. O. 2007. Measures of text entry performance. In Text Entry Systems: Mobility, Accessibility, Universality, I. S. MacKenzie and K. Tanaka-Ishii (eds.). San Francisco: Morgan Kaufmann, 47--74.Google ScholarGoogle Scholar
  40. Zhai, S., Smith, B. A., Hunter, M. 2002. Performance Optimization of Virtual Keyboards. Human-Computer Interaction 17(2&3), 229--269.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Personalized input: improving ten-finger touchscreen typing through automatic adaptation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2012
      3276 pages
      ISBN:9781450310154
      DOI:10.1145/2207676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader