

skip to main content

 [image: ACM Digital Library home]

 [image: ACM corporate logo]

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 Communications of the ACM
	Magazine Home
	Online First
	Latest Issue
	
	Archive
	Authors
	About
	CACM Affiliations
	ACM Award Winners

	More

 	Home
	Magazines
	Communications of the ACM
	Vol. 55, No. 6
	Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs

research-article Free Access

Share on	
	
	
	
	

Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs

 	Authors:
	 [image: Author Picture]Tiark Rompf
 EPFL, Lausanne, Switzerland

 EPFL, Lausanne, Switzerland
View Profile

,
	 [image: Author Picture]Martin Odersky
 EPFL, Lausanne, Switzerland

 EPFL, Lausanne, Switzerland
View Profile

Authors Info & Claims

 Communications of the ACMVolume 55Issue 6June 2012pp 121–130https://doi.org/10.1145/2184319.2184345

Published:01 June 2012Publication History[image: Check for updates on crossmark]

	116citation
	6,509
	Downloads

Metrics
Total Citations116
Total Downloads6,509
Last 12 Months278
Last 6 weeks49

	Get Citation Alerts[bookmark: id-hatemile-navigation-6073290063892647-7]New Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

[bookmark: id-hatemile-navigation-6073290063892647-9]New Citation Alert!

Please log in to your account

	
	
	Publisher Site

	
	View all Formats
	PDF

Communications of the ACM
Volume 55, Issue 6

 PreviousArticleNextArticle

[image: ACM Digital Library]

[bookmark: abstract]Skip Abstract SectionAbstract

Good software engineering practice demands generalization and abstraction, whereas high performance demands specialization and concretization. These goals are at odds, and compilers can only rarely translate expressive high-level programs to modern hardware platforms in a way that makes best use of the available resources.
Generative programming is a promising alternative to fully automatic translation. Instead of writing down the target program directly, developers write a program generator, which produces the target program as its output. The generator can be written in a high-level, generic style and can still produce efficient, specialized target programs. In practice, however, developing high-quality program generators requires a very large effort that is often hard to amortize.
We present lightweight modular staging (LMS), a generative programming approach that lowers this effort significantly. LMS seamlessly combines program generator logic with the generated code in a single program, using only types to distinguish the two stages of execution. Through extensive use of component technology, LMS makes a reusable and extensible compiler framework available at the library level, allowing programmers to tightly integrate domain-specific abstractions and optimizations into the generation process, with common generic optimizations provided by the framework.
LMS is well suited to develop embedded domain-specific languages (DSLs) and has been used to develop powerful performance-oriented DSLs for demanding domains such as machine learning, with code generation for heterogeneous platforms including GPUs. LMS has also been used to generate SQL for embedded database queries and JavaScript for web applications.

 References

	Calcagno, C., Taha, W., Huang, L., Leroy, X. Implementing multi-stage languages using asts, gensym, and reflection. GPCE, F. Pfenning and Y. smaragdakis, eds. Volume 2830 of Lecture Notes in Computer Science (2003). Springer, 57--76. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Carette, J. Kiselyov, O., chieh Shan, C., Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages. J. Funct. Program, 19, 5 (2009), 509--543. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Cohen, A., Donadio, S., Garzarán, M.J., Herrmann, C.A., Kiselyov, O., Padua, D.A. In search of a program generator to implement generic transformations for high-performance computing. Sci. Comput. Program. 62, 1 (2006), 25--46. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Czarnecki, K., O'Donnell, J.T., Striegnitz, J., Taha, W., Dsl implementation in metaocaml, template haskell, and c++. In Domain-Specific Program Generation (2003), 51--72.Google Scholar[image: Google Scholar]
	Elliott, C., Finne, S., de Moor, O. Compiling embedded languages. J. Funct, Program, 13, 3 (2003), 455-481. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Frigo, M. A fast Fourier transform compiler. In PLDI (1999), 169--180. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Guerrero, M., Pizzi, E., Rosenbaum, R., Swadi, K.N., Taha, W. Implementing dsls in metaocaml. OOPSLA Companion, J. M. Vlissides and D. C. Schmidt, eds. (2004). ACM, 41--42. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Hofer, C., Ostermann, K., Rendel, T., Moors, A. Polymorphic embedding of dsls. GPCE, Y. Smaragdakis and J.G. Siek, eds. (2008). ACM, 137--148. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Hudak, P. Modular domain specific languages and tools. In Proceedings of Fifth International Conference on Software Reuse (June 1998), 134--142. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Kameyama, Y., Kiselyov, O., chieh Shan, C. Shifting the stage: staging with delimited control. PEPM, G. Puebla and G. Vidal, eds. (2009). ACM, 111--120. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Kennedy, K., Broom, B., Cooper, K.D., Dongarra, J., Fowler, R.J., Gannon, D., Johnsson, S.L., Mellor-Crummey, J.M., Torczon, L. Telescoping languages: A strategy for automatic generation of scientific problem-solving systems from annotated libraries. J. Parallel Distrib, Comput. 61, 12 (2001), 1803--1826.Google Scholar[image: Google Scholar]
	Kiselyov, O., Swadi, K.N., Taha, W. A methodology for generating verified combinatorial circuits. EMSOFT, G.C. Buttazzo, ed. (2004). ACM, 249--258. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Lee, H., Brown, K.J., Sujeeth, A.K., Chafi, H., Rompf, T., Odersky, M., Olukotun, K. Implementing domain-specific languages for heterogeneous parallel computing. IEEE Micro 31, 5 (2011), 42--53. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Leijen, D., Meijer, E. Domain specific embedded compilers. In DSL (1999), 109--122. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Odersky, M., Zenger, M. Scalable component abstractions. OOPSLA, R. E. Johnson and R.P. Gabriel, eds. (2005). ACM, 41--57. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Pfenning, F., Elliott, C. Higher-order abstract syntax. In PLDI (1988), 199--208. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Püschel, M., Moura, J.M.F., Singer, B., Xiong, J., Johnson, J., Padua, D.A., Veloso, M.M., Johnson, R.W. Spiral: A generator for platform-adapted libraries of signal processing alogorithms. IJHPCA, 18, 1 (2004), 21--45. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Rompf, T., Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Odersky, M., Olukotun, K. Building-blocks for performance oriented dsls. In DSL (2011), 93--117.Google Scholar[image: Google Scholar]Cross Ref[image: Cross Ref]
	Sheard, T., Benaissa, Z.E.A., Pasalic, E. Dsl implementation using staging and monads. In DSL (1999), 81--94. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Sheard, T., Jones, S.L.P. Template meta-programming for haskell. SIGPLAN Not. 37, 12 (2002), 60--75. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Swadi, K.N., Taha, W., Kiselyov, O., Pasalic, E. A monadic approach for avoiding code duplication when staging memoized functions. PEPM, J. Hatcliff and F. Tip, eds. (2006). ACM, 160--169. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Taha, W., Sheard, T. Metaml and multi-stage programming with explicit annotations. Theor, Comput, Sci. 248(1--2) (2000), 211--242. Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Veldhuizen. T "Expression Templates," in Stanley B. Lippman (Editor), C++ Gems (SIGS Books and Multimedia, 1996), pp. 475--488 Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Veldhuizen, T.L. Active libraries and universal languages. PhD thesis, Indiana University Computer Science (May 2004). Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]
	Whaley, R.C., Petitet, A., Dongarra, J. Automated empirical optimizations of software and the atlas project. Parallel Comput. 27(1--2) (2001), 3--35.Google Scholar[image: Google Scholar]Digital Library[image: Digital Library]

 Cited By
View all

 [image:]

 Index Terms

	Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
	Software and its engineering

	Software notations and tools

	Compilers

	General programming languages

	Language features

 Recommendations

 	Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
GPCE '10

		Software engineering demands generality and abstraction, performance demands specialization and concretization. Generative programming can provide both, but the effort required to develop high-quality program generators likely offsets their benefits, ...

Read More

	Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
GPCE '10: Proceedings of the ninth international conference on Generative programming and component engineering

		Software engineering demands generality and abstraction, performance demands specialization and concretization. Generative programming can provide both, but the effort required to develop high-quality program generators likely offsets their benefits, ...

Read More

	DSL implementation using staging and monads
DSL '99: Proceedings of the 2nd conference on Domain-specific languages

		The impact of Domain Specific Languages (DSLs) on software design is considerable. They allow programs to be more concise than equivalent programs written in a high-level programming languages. They relieve programmers from making decisions about data-...

Read More

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Article

	Information
	Contributors

	Published in

 [image: cover image Communications of the ACM]
Communications of the ACM Volume 55, Issue 6
June 2012
124 pages
ISSN:0001-0782
EISSN:1557-7317
DOI:10.1145/2184319
Issue’s Table of Contents

Copyright © 2012 ACM
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 1 June 2012

 Permissions
Request permissions about this article.
Request Permissions

Check for updates
[image: Check for updates on crossmark]

Qualifiers
	research-article
	Popular
	Refereed

Conference

Funding Sources

	

 [image:]

Other Metrics
View Article Metrics

	Bibliometrics
	Citations116

	Article Metrics
	116
Total Citations
View Citations
	6,509
Total Downloads

	Downloads (Last 12 months)278
	Downloads (Last 6 weeks)49

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

HTML Format
View this article in HTML Format .
View HTML Format

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/2184319.2184345
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Issue’s Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 [image: ACM Digital Library home]

 [image: ACM home]

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

