skip to main content
10.1145/2155620.2155622acmconferencesArticle/Chapter ViewAbstractPublication PagesmicroConference Proceedingsconference-collections
research-article

Active management of timing guardband to save energy in POWER7

Published:03 December 2011Publication History

ABSTRACT

Microprocessor voltage levels include substantial margin to deal with process variation, system power supply variation, workload induced thermal and voltage variation, aging, random uncertainty, and test inaccuracy. This margin allows the microprocessor to operate correctly during worst-case conditions, but during typical conditions it is larger than necessary and wastes energy. We present a mechanism that reduces excess voltage margin by (1) introducing a critical path monitor (CPM) circuit that measures available timing margin in real-time, (2) coupling the CPM output to the clock generation circuit to adjust clock frequency within cycles in response to excess or inadequate timing margin, and (3) adjusting the processor voltage level periodically in firmware to achieve a specified average clock frequency target. We implemented this mechanism in a prototype IBM POWER7 server. During better-than-worst case conditions our guardband management mechanism reduces the average voltage setting 137-152 mV below nominal, resulting in average processor power reduction of 24% with no performance loss while running industry-standard benchmarks.

References

  1. Bowman, K. A.; Tschanz, J. W.; Kim, N. S.; Lee, J. C.; Wilkerson, C. B.; Lu, S.-L.L.; Karnik, T.; De, V. K. 2009. Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance. IEEE Journal of Solid-State Circuits. 44, 1 (Jan. 2009), 49--63. DOI=10.1109/JSSC.2008.2007148.Google ScholarGoogle ScholarCross RefCross Ref
  2. Das, S.; Tokunaga, C.; Pant, S.; Ma, W.-H.; Kalaiselvan, S.; Lai, K.; Bull, D. M.; Blaauw, D. T. 2009. RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance. IEEE Journal of Solid-State Circuits, 44, 1 (Jan. 2009). IEEE, 32--48. DOI=10.1109/JSSC.2008.2007145.Google ScholarGoogle ScholarCross RefCross Ref
  3. Das, S. 2009. Razor: A Variability-Tolerant Design Methodology for Low-power and Robust Computing. Doctoral Thesis. University of Michigan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dighe, S.; Vangal, S.; Aseron, P.; Kumar, S.; Jacob, T.; Bowman, K.; Howard, J.; Tschanz, J.; Erraguntla, V.; Borkar, N.; De, V.; Borkar, S. 2010. Within-die variation-aware dynamic-voltage-frequency scaling core mapping and thread hopping for an 80-core processor. International Solid-State Circuits Conference Digest of Technical Papers (Feb. 7--11, 2010). ISSCC 2010. IEEE, 174--175. DOI=10.1109/ISSCC.2010.5433997.Google ScholarGoogle ScholarCross RefCross Ref
  5. Drake, A.; Senger, R.; Deogun, H.; Carpenter, G.; Ghiasi, S.; Nguyen, T.; James, N.; Floyd, M.; Pokala, V. 2007. A Distributed Critical-Path Timing Monitor for a 65nm High-Performance Microprocessor. International Solid-State Circuits Conference Digest of Technical Papers (Feb 11--15, 2007). ISSCC 2007. IEEE, 398--399. DOI=10.1109/ISSCC.2007.373462.Google ScholarGoogle ScholarCross RefCross Ref
  6. Ernst, D.; Kim, N. S.; Das, S.; Pant, S.; Rao, R.; Pham, T.; Ziesler, C.; Blaauw, D.; Austin, T.; Flautner, K.; Mudge, T. 2003. Razor: a low-power pipeline based on circuit-level timing speculation. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (Dec 3--5, 2003). MICRO-36. 7--18. DOI=10.1109/MICRO.2003.1253179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ernst, D.; Das, S.; Lee, S.; Blaauw, D.; Austin, T.; Mudge, T.; Kim, N. S.; Flautner, K. 2004. Razor: circuit-level correction of timing errors for low-power operation. Micro, 24, 6 (Nov.-Dec. 2004), IEEE, 10--20. DOI=10.1109/MM.2004.85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fick, D.; Liu, N.; Foo, Z.; Fojtik, M.; Seo, J.; Sylvester, D.; Blaauw, D. 2010. In situ delay-slack monitor for high-performance processors using an all-digital self-calibrating 5ps resolution time-to-digital converter. International Solid-State Circuits Conference Digest of Technical Papers (Feb. 7--11, 2010). ISSCC 2010. IEEE, 188--189. DOI=10.1109/ISSCC.2010.5433996.Google ScholarGoogle ScholarCross RefCross Ref
  9. Fischer, T.; Anderson, F.; Patella, B.; Naffziger, S. 2005. A 90nm variable-frequency clock system for a power-managed Itanium®-family processor. International Solid-State Circuits Conference Digest of Technical Papers (Feb. 2005). ISSCC 2005. IEEE. 294--299. DOI=10.1109/ISSCC.2005.1493985.Google ScholarGoogle ScholarCross RefCross Ref
  10. Floyd, M.; Allen-Ware, M.; Rajamani, K.; Brock, B.; Lefurgy, C.; Drake, A. J.; Pesantez, L.; Gloekler, T.; Tierno, J. A.; Bose, P.; Buyuktosunoglu, A. 2011. Introducing the Adaptive Energy Management Features of the Power7 Chip. IEEE Micro, 31, 2, (March-April 2011), 60--75. DOI=10.1109/MM.2011.29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gupta, M. S.; Rangan, K. K.; Smith, M. D.; Gu-Yeon Wei; Brooks, D. 2008. DeCoR: A Delayed Commit and Rollback mechanism for handling inductive noise in processors. In IEEE 14th International Symposium on High Performance Computer Architecture (Salt Lake City, UT, February 2008). HPCA 2008. IEEE, 381--392. DOI=10.1109/HPCA.2008.4658654.Google ScholarGoogle ScholarCross RefCross Ref
  12. IBM. 2011. IBM POWER7 Technology and Systems. IBM Journal of Research and Development. 55, 3 (May-June 2011). DOI=10.1147/JRD.2011.2128750.Google ScholarGoogle Scholar
  13. Intel Corporation. 2009. Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.1 Design Guidelines. Reference Number 321736, Revision 002, September, 2009.Google ScholarGoogle Scholar
  14. Isci, C.; Contreras, G.; Martonosi, M. 2006. Live, Runtime Phase Monitoring and Prediction on Real Systems with Application to Dynamic Power Management. In Proceedings of the 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 39). IEEE Computer Society, Washington, DC, USA, 359--370. DOI=10.1109/MICRO.2006.30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kang, I.; Ethirajan, K.; Severson, M. 2005. Dynamic Voltage Scaling for Portable Devices, U. S. Patent Application 2005/0218871 A1.Google ScholarGoogle Scholar
  16. Keane, J.; Kim, C. H. 2001. An odometer for CPUs. IEEE Spectrum. 48, 5 (May 2011), 28--33. DOI=10.1109/MSPEC.2011.5753241.Google ScholarGoogle Scholar
  17. Meterelliyoz, M.; Goel, A.; Kulkarni, J. P.; Roy, K. 2010. Accurate characterization of random process variations using a robust low-voltage high-sensitivity sensor featuring replicabias circuit. International Solid-State Circuits Conference Digest of Technical Papers (Feb. 7--11, 2010). ISSCC 2010. IEEE, 186--187. DOI=10.1109/ISSCC.2010.5433991.Google ScholarGoogle Scholar
  18. Reddi, V.; Kanev, S.; Kim, W.; Campanoni, S.; Smith, M. D.; Wei, G.-Y.; Brooks, D. 2010. Voltage Smoothing: Characterizing and Mitigating Voltage Noise in Production Processors via Software-Guided Thread Scheduling. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 43). IEEE Computer Society, Washington, DC, USA, 77--88. DOI=10.1109/MICRO.2010.35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rylyakov, A.; Tierno, J.; English, G.; Sperling, M.; Friedman, D. 2008. A wide tuning range (1 GHz-to-15 GHz) fractional-N all-digital PLL in 45nm SOI. In Proc. 2008 IEEE Custom Integrated Circuits Conference (Sept. 21--24, 2008). CICC 2008. 431--434. DOI=10.1109/CICC.2008.4672113.Google ScholarGoogle ScholarCross RefCross Ref
  20. Rylyakov, A.; Tierno, J. A. 2010. Method and Apparatus for Low Latency Proportional Path in a Digitally Controlled System. U. S. Patent Application 2010/0017690 A1. January 21, 2010.Google ScholarGoogle Scholar
  21. Tierno, J. A.; Rylyakov, A. V.; Friedman, D. J. 2008. A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI. IEEE Journal of Solid-State Circuits. 43, 1 (Jan. 2008), 42--51. DOI=10.1109/JSSC.2007.910966.Google ScholarGoogle ScholarCross RefCross Ref
  22. Tiwari, A.; Torrellas, J. 2008. Facelift: Hiding and slowing down aging in multicores. In Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture (MICRO 41). IEEE Computer Society, Washington, DC, USA, 129--140. DOI=10.1109/MICRO.2008.4771785. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Active management of timing guardband to save energy in POWER7

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MICRO-44: Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
      December 2011
      519 pages
      ISBN:9781450310536
      DOI:10.1145/2155620
      • Conference Chair:
      • Carlo Galuzzi,
      • General Chair:
      • Luigi Carro,
      • Program Chairs:
      • Andreas Moshovos,
      • Milos Prvulovic

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 December 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate484of2,242submissions,22%

      Upcoming Conference

      MICRO '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader