skip to main content
10.1145/2096123.2096131acmconferencesArticle/Chapter ViewAbstractPublication Pageshipcna-pgConference Proceedingsconference-collections
research-article

Developing a dynamic model of cascading failure for high performance computing using trilinos

Published:13 November 2011Publication History

ABSTRACT

This paper describes work-in-progress toward the development of a dynamic model of cascading failure in power systems that is suitable for High Performance Computing simulation environments. Doing so involves simulating a power grid as a set of differential, algebraic and discrete equations. We describe the general form of the algorithm in use for this simulation and provide details about the implementation using the Trilinos software libraries. Several computational tests illustrate how the proposed approach can be leveraged to optimize the computational efficiency of cascading failure simulation.

References

  1. Y. Chen, Z. Huang, and D. Chavarría-Miranda. Performance evaluation of counter-based dynamic load balancing schemes for massive contingency analysis with different computing environments. In Proceedings of the IEEE Power and Energy Society General Meeting, pages 1--6. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  2. CRSA, RTE, TE, and TU/e. Algorithmic requirements for simulation of large network. Technical report, PEGASE Consortium, 2011.Google ScholarGoogle Scholar
  3. C. M. Davis and T. J. Overbye. Multiple element contingency screening. Power Systems, IEEE Transactions on, 26(3):1294--1301, 2011.Google ScholarGoogle Scholar
  4. T. Davis. Direct methods for sparse linear systems, volume 2. Society for Industrial Mathematics, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. A. Davis. A column pre-ordering strategy for the unsymmetric-patter multifrontal method. ACM Trans. Math. Softw., 30:165--195, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications}, 20(3):720--755, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. I. Dobson, J. Kim, and K. R. Wierzbicki. Testing branching process estimators of cascading failure with data from a simulation of transmission line outages. Risk Analysis, 30(4):650--662, Apr. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Ejebe and B. Wollenberg. Automatic contingency selection. IEEE Transactions on Power Apparatus and Systems, PAS-98:97 --109, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Fitzmaurice, A. Keane, and M. O'Malley. Effect of short-term risk-aversive dispatch on a complex system mode for power systems. IEEE Transactions on Power Systems, 26(1):460--469, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams. and K. S. Stanley. An overview of the trilinos project. ACM Transactions on Mathematical Software, 31(3):397--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Jin, Z. Huang, Y. Chen, D. Chavarría-Miranda, J. Feo, and P. Wong. A novel application of parallel betweenness centrality to power grid contingency analysis. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1--7. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  12. E. Keiter, H. Thornquist, R. Hoekstra, T. Russo, R. Schiek, and E. Rankin. Parallel transistor-level circuit simulation. In Simulation and Verification of Electronic and Biological Systems. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. T. Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.Google ScholarGoogle Scholar
  14. S. Khaitan and J. McCalley. A class of new preconditioners for linear solvers used in power system time-domain simulation. Power Systems, IEEE Transactions on, 25(4):1835--1844, 2010.Google ScholarGoogle Scholar
  15. S. Khaitan, J. McCalley, and Q. Chen. Multifrontal solver for online power system time-domain simulation. Power Systems, IEEE Transactions on, 23(4):1727--1737, 2008.Google ScholarGoogle Scholar
  16. P. Kundur. Power System Stability and Control. Electric Power Research Institute/McGraw-Hill, 1993.Google ScholarGoogle Scholar
  17. NERC. Reliability Standards for the Bulk Electric Systems of North America. North American Electric Reliability Corporation, May 2009.Google ScholarGoogle Scholar
  18. H. Ren, I. Dobson, and B. Carreras. Long-term effect of the n-1 criterion on cascading line outages in an evolving power transmission grid. Power Systems, IEEE Transactions on, 23(3):1217--1225, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Sala, K. Stanley, and M. Heroux. Amesos: A set of general interfaces to sparse direct solver libraries. In Proceedings of PARA'06 Conference, Umea, Sweden, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO. Fut. Gen. Comput. Sys., 20(3):475--487, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Stanley and T. Davis. KLU: a 'Clark Kent' sparse LU factorization algorithm for circuit matrices. In SIAM Conference on Parallel Processing for Scientfic Computing (PP04), 2004.Google ScholarGoogle Scholar
  22. D. Stewart. A high accuracy method for solving odes with discontinuous right-hand side. Numerische Mathematik, 58(1):299--328, 1990.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Trefethen and D. Bau. Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines, M. Papic. S. Miller, and P. Zhang. Risk assessment of cascading outages: Methodologies and challenges. Power Systems, IEEE Transactions on, 2011.Google ScholarGoogle Scholar
  25. R. Zimmerman, C. Murillo-Sánchez, and R. Thomas. Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems, 26(1):12--19, 2011.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Developing a dynamic model of cascading failure for high performance computing using trilinos

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      HiPCNA-PG '11: Proceedings of the first international workshop on High performance computing, networking and analytics for the power grid
      November 2011
      90 pages
      ISBN:9781450310611
      DOI:10.1145/2096123

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 November 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate5of7submissions,71%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader