skip to main content
10.1145/2019406.2019426acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Real-time classification of dance gestures from skeleton animation

Published:05 August 2011Publication History

ABSTRACT

We present a real-time gesture classification system for skeletal wireframe motion. Its key components include an angular representation of the skeleton designed for recognition robustness under noisy input, a cascaded correlation-based classifier for multivariate time-series data, and a distance metric based on dynamic time-warping to evaluate the difference in motion between an acquired gesture and an oracle for the matching gesture. While the first and last tools are generic in nature and could be applied to any gesture-matching scenario, the classifier is conceived based on the assumption that the input motion adheres to a known, canonical time-base: a musical beat. On a benchmark comprising 28 gesture classes, hundreds of gesture instances recorded using the XBOX Kinect platform and performed by dozens of subjects for each gesture class, our classifier has an average accuracy of 96:9%, for approximately 4-second skeletal motion recordings. This accuracy is remarkable given the input noise from the real-time depth sensor.

Skip Supplemental Material Section

Supplemental Material

References

  1. {AF02} Arikan O., Forsyth D. A.: Interactive motion generation from examples. ACM Trans. Graph. (2002). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {BD01} Bobick A., Davis J.: The recognition of human movement using temporal templates. IEEE Trans. on Pattern Anal. and Machine Intell (2001). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {BH00} Brand M., Hertzmann A.: Style machines. In Proc. of the conf. on Computer graphics and interactive techniques (2000), SIGGRAPH '00. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {Bis06} Bishop C.: Pattern recognition and machine learning, vol. 4. Springer New York, 2006. 6, 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {BSP*04} Barbič J., Safonova A., Pan J.-Y., Faloutsos C., Hodgins J. K., Pollard N. S.: Segmenting motion capture data into distinct behaviors. In Proc. of Graphics Interface (2004). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {CB95} Campbell L., Bobick A.: Recognition of human body motion using phase space constraints. In Proc. of Intl. Conf. of Computer Vision (1995). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {FF05} Forbes K., Fiume E.: An efficient search algorithm for motion data using weighted pca. In Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer animation (2005). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {FRM94} Faloutsos C., Ranganathan M., Manolopoulos Y.: Fast subsequence matching in time-series databases. In Proc. of the ACM SIGMOD (1994). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {Har} Harmonix Music Systems: www.dancecentral.com. 1Google ScholarGoogle Scholar
  10. {HGP04} Hsu E., Gentry S., Popović J.: Example-based control of human motion. In Proc. of the ACM SIGGRAPH/Eurographics symposium on Computer animation (2004). 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {IWZL09} Ishigaki S., White T., Zordan V. B., Liu C. K.: Performance-based control interface for character animation. ACM Trans. Graph. (2009). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {Joh73} Johansson G.: Visual perception of biological motion and a model for its analysis. Perceiving events and objects (1973). 2Google ScholarGoogle Scholar
  13. {Keo02} Keogh E.: Exact indexing of dynamic time warping. In Proc of the Intl. conf. on VLDB (2002). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {KGP02} Kovar L., Gleicher M., Pighin F.: Motion graphs. ACM Trans. Graph. (2002). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {KOF05} Kirk A., O'Brien J., Forsyth D.: Skeletal parameter estimation from optical motion capture data. In Proc. of Conf. Computer Vision and Pattern Recognition (2005). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {KPS03} Kim T., Park S., Shin S.: Rhythmic-motion synthesis based on motion-beat analysis. ACM Trans. Graph. (2003). 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {KPZ*04} Keogh E., Palpanas T., Zordan V., Gunopulos D., Cardle M.: Indexing large human-motion databases. In Proc. of the Intl. Conf. on VLDB (2004). 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {LCR*02} Lee J., Chai J., Reitsma P., Hodgins J., Pollard N.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. (2002). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {LNL05} Lv F., Nevatia R., Lee M. W.: 3D human action recognition using spatio-temporal motion templates. In Computer Vision in Human-Computer Interaction (2005). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {LZWM05} Liu G., Zhang J., Wang W., McMillan L.: A system for analyzing and indexing human-motion databases. In Proc. of the ACM SIGMOD (2005). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {MR06} Müller M., Röder T.: Motion templates for automatic classification and retrieval of motion capture data. In Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer animation (2006). 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {MRC05} Müller M., Röder T., Clausen M.: Efficient content-based retrieval of motion capture data. In ACM SIGGRAPH (2005). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {OFH08} Onuma K., Faloutsos C., Hodgins J.: FMDistance: A fast and effective distance function for motion capture data. Short Papers Proc. of EUROGRAPHICS (2008). 3, 9Google ScholarGoogle Scholar
  24. {RCB02} Rose C., Cohen M. F., Bodenheimer B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications (2002). 10 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. {SFC*11} Shotton J., Fitzgibbon A., Cook M., Sharp T., Finocchio M., Moore R., Kipman A., Blake A.: Real-time human pose recognition in parts from single depth images. In Proc. Conf. Computer Vision and Pattern Recognition (2011). 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. {SH08} Slyper R., Hodgins J.: Action capture with accelerometers. In Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2008). 9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {SLC04} Schuldt C., Laptev I., Caputo B.: Recognizing human actions: A local SVM approach. In Proc. Intl. Conf. on Pattern Recognition (2004). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. {TC02} Tzanetakis G., Cook P.: Musical genre classification of audio signals. IEEE Trans. on Speech and Audio Processing (2002). 5Google ScholarGoogle Scholar
  29. {WTK87} Witkin A., Terzopoulos D., Kass M.: Signal matching through scale space. Intl. Journal of Computer Vision (1987). 6Google ScholarGoogle Scholar

Index Terms

  1. Real-time classification of dance gestures from skeleton animation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCA '11: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
      August 2011
      297 pages
      ISBN:9781450309233
      DOI:10.1145/2019406

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate183of487submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader